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( ABSTRACT

A connectionist architecture is developed that can be used 
for modeling choice probabilities and reaction times in 
psychophysics and word recognition. The network architecture 
consists of a feed-forward network and a decoding module. 
Learning is by mean-variance back-propagation, an extension 
of the standard back-propagation learning algorithm. The new 
learning procedure is interpreted as a selective attention 
mechanism, and leads to a better model of learning in simple 
identification tasks than the standard back-propagation. 
Choice probabilities are modeled by the input/output 
relations of the network, and reaction times are modeled by 
the time taken for the network, particularly the decoding 
module, to achieve a stable state. The model is applied to 
both unidimensional and multidimensional identification tasks 
in psychophysics and to word recognition.
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XI

r£sum£

Cette thtse propose une architecture connexioniste hybride 
constitute d'un reseau en couches et d'un module de decodage 
pour le modelage des choix et des latences dans des taches 
d 1 identification simple et de reconnaissance de mots. De 
plus, une version modifiee (mean-variance back-propagation) 
de l'algorithme d1apprentissage par propagation retroactive 
de l'erreur est proposte. Les resultats demontrent que ce 
nouvel algorithme, qui permet 1'inclusion d'un mecanisme 
d'attention selective, posstde une meilleure adequation que 
l'approche traditionelle pour modeler 1 1apprentissage 
cognitif dans des taches d'identification. II est demontre 
que le module propose peut rendre compte de plusieurs 
phenomtnes comportementaux.
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STATEMENT OF ORIGINAL CONTRIBUTIONS

This thesis reports five distinct significant research 
contributions.

1. While response time is fundamental in the study of 
cognition, there is limited research demonstrating parallels 
between human reaction time and processing time in a 
connectionist network. I suggest a possible implementation in 
connectionist networks of time-dependent processes. While 
some researchers have used a goodness of fit indicator such 
as mean-square error as a predictor for latencies in such 
networks (Seidenberg & McClelland, 1989), others have 
proposed dynamic connectionist networks to model reaction 
time — for instance, Cohen, Dunbar and McClelland (1990) 
superimposed a cascade mechanism (McClelland, 197 9) on each 
unit of a feed-forward net. I prefer a modular approach 
whereby distinct modules map and decode information in real 
time — specifically, I propose a hybrid architecture 
consisting of a feed-forward mapping network the output of 
which is fed into a dynamic decoding module.

2. As a specific application of this approach, a model of 
absolute identification is proposed. Not only do the results 
reported here show that a connectionist system can learn 
simple identification tasks, but they also demonstrate that 
under reasonable conditions the resulting learning curves and 
performance indicators match behavioral data.
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*
* 3 . 1  develop a new learning algorithm that is a modified

version of the famous back-propagation (BP) learning 
algorithm. Back-propagation adaptatively changes the weights 
of the network to minimize a mean-square error criterion. The 
modified version that I propose and call mean-variance back- 
propagation (MV-BP) adaptively minimizes a weighted mixture 
of the mean and variance of the squared error. This new 
algorithm, which implements a selective attention mechanism 
in the learning process, gives better fits to behavioral data 
in cognitive learning than does the standard back-propagation 
algorithm.

4. In an attempt to model larger scale identification tasks a 
model of word recognition and naming is proposed. Although 
the scope of this model is limited, it does provide results 
matching some fundamental behavioral data. Effects of word 
regularity and word frequency on response time are 
replicated. A hybrid architecture similar to that used to 
model absolute identification demonstrates possible links 
between response time, probability of error and task 
difficulty in this domain.

5. The work presented here also makes significant technical 
contributions to the connectionist field through Zip__net, a 
neural network simulator. It is a fast, easy to use, feed­
forward network simulator. This software is available at no 
charge from the author and is described in Appendix 1.
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CHAPTER 1 
INTRODUCTION

This thesis studies various identification tasks from the 
connectionist perspective. Connectionism is an emerging 
paradigm in cognitive science, with connectionist models 
being a class of statistical models based on the assumption 
that cognitive processes can be represented using networks of 
simple interconnected processing elements (McClelland, 
Rumelhart & Hinton, 1986 ) . The working principles behind 
connectionist models are not new, with connectionism forming 
an extension of frequently used statistical models, the main 
difference being that connectionist models are generally non­
linear and involve a large number of parameters.

The connectionist approach contributes an innovative 
perspective to the modeling of cognitive processes. First, 
knowledge representation is distributed - i.e. information is 
represented through a pattern of activations distributed 

across units. Second, in contrast to symbolic information 
processing, the computational information (program) is not 
represented differently than the factual information (data), 
with both being encoded in the weighted links of the network.

This new conceptualization marks an important shift in 
cognitive science, which has previously been mostly dominated 
by symbolic information processing approaches. With the 
symbolic approach, specific chunks of knowledge (data) are
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represented by arbitrary symbols independent of the 
computational information (program). With connectionism, the 
arbitrary symbolic representation is replaced by distributed 
patterns of activation while a set of weak processing 
constraints replaces the inference machine. This is a shift 
from a conceptualization in which the brain is seen as a 
finite state automaton to a new view where the processing 
depends on a large number of analogue devices. This new 
paradigm has engendered an immense enthusiasm and brought 
together researchers from various fields including 
psychology, physics, computer science and matnematics. The 
work reported here takes a definite psychological 
perspective. The goal is not so much to develop efficient 
ways to perform cognitive tasks, but rather to investigate 
the psychological plausibility of connectionist 
implementations.

Every connectionist model involves three sets of assumptions 
concerning architecture, l e a r n i n g  and stim ulu s 
representation. Independent of the particular application, a 
careful study of these three aspects is needed to build a 
good connectionist model. Contrary to common belief, the 
apparent similarity between connectionist networks and the 
brain does not guarantee the adequacy of the connectionist 
approach for modeling behavioral data. For instance, one of 
the areas discussed in this thesis is simple identification 
tasks. It will be seen that a psychologically plausible
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implementation is obtained only after careful study of the 
architecture, learning implementation and stimulus 
representation.

The major methodology used here is simulation "experiments". 
This is certainly the best way to study a complex self- 
adaptive artificial system. Each simulation is one out of a 
large set of possible realizations, which means that a 
connectionist network is not a general model that represents 
average characteristics of several realizations, but rather 
it is a model which attempts to mimic the behavior of a 
single individual. Thus, the adequacy of the model should be 
tested by comparing the output of a single simulation to the 
data of a single individual.

The simulation approach has several limitations, the main one 
being that it is very costly and time-consuming to evaluate 
chance effects. When a simulation is run, several pseudo­
random processes are involved (such as the starting values of 
the connecting weights of the network) which affect the 
network behavior (Kolen & Pollack, 1990) . It is always 
possible that the observed results depend on the specific 
pseudo-random sequences generated. Also, software bugs are 
always possible. A solution to these problems is to replicate 
all simulations several times and estimate average 
characteristics. This solution is impractical: a single 
simulation of the type reported in this thesis can easily
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take several days to run on a SUN-3 computer (the machine 
that I used) .

1.1. Scope and goals. The motivating factor behind the 
work reported here was the study of reaction time within a 
connectionist framework. To do this two exemplar tasks were 
chosen: a simple one, absolute identification, and a complex 
one, word recognition and naming. Most of the work reported 
here concerns absolute identification. The simplicity of this 
task allows a better understanding of the mechanisms 
involved, while the reasonable size of the networks needed 
for the simulations permits detailed study of the network 
parameters. The word recognition model presented here is 
intended to demonstrate that complex identification tasks can 
also be implemented within the proposed approach. 
Unfortunately, the complexity of the network involved limits 
the scope of its application - the word recognition 
simulation reported here represents ten (10) days processing 
time on a devoted SUN-3/I60 computer.

1.2. Structure of the thesis. The text has six chapters. 
Following this introduction, Chapter 2 provides a review of 
important connectionist models. The matrix approach which 
embodies several fundamental characteristics of connectionism 
is described in some detail. For the same reason the feed­
forward network and the back-propagation learning algorithm 
are described extensively. A study of the classical encoder
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problem is provided which should give the reader a better 
feeling for the working principles of feed-forward networks.

Chapter 3 presents a review of data and non-connectionist 
models relevant to absolute identification. Basic behavioral 
phenomena and more traditional modeling approaches are 
described. The core of the thesis is Chapter 4, where a 
connectionist implementation of absolute identification is 
presented. Section 4.1 concerns learning and presents a 
modified version of the back-propagation learning algorithm 
that I call mean-variance back-propagation — it implements a 
selective attention mechanism that gives results which are 
descriptively more adequate than those obtained from standard 
back-propagation. Section 4.2 discusses a hybrid 

connectionist architecture that is useful for modeling
reaction time - the structure consists of a mapping device (a
feed-forward net) and a decoding module. Section 4.3 
discusses the implementation of a Gaussian sensory trace 
model while Section 4.4 integrates the material of the 
previous three sections and presents the overall model of
absolute identification using mean-variance back-propagation,
the hybrid connectionist architecture and Gaussian sensory 
traces. Section 4.5 extends the results to two-dimensional 
stimuli.

Chapter 5 presents a model for the more complicated 
identification task of word recognition and naming. A hybrid 
architecture similar to the one used previously is described.
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A general discussion follows in Chapter 6. Finally, Appendix 
1 contains a description of the Zip_net neural network 
simulator that I have developed. The development of the 
simulator was an integral part of the work on this thesis as 
no available software had the features that I needed.
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CHAPTER 2
A REVIEW OF THE MAJOR CONNECTIONIST MODELS

2.1. Early work

Modern connectionism can be traced to McCulloch and Pitts 
(1943), who first demonstrated that a network of neuron-like 
elements can perform elementary computations. This was the 
beginning of a new conceptualization in which cognition is 
seen as emerging from computational properties of simple 
processing elements. Hebb expanded the idea in The 
Organization of Behavior (1949) and suggested how learning 
might be implemented by cell assemblies. He assumed that 
knowledge is encoded in the strengths of the interconnections 
between neurons, and that learning involves changes of these 
weights. His law governing the weight changes, the now well- 
known correlational hypothesis, can be expressed simply: two 
neurons will tend to strengthen or develop a common link if 
their activity levels are correlated. From a neuro-anatomical 
point of view, Hebb's suggestion has never been proved or 
disproved in a definite manner since the micro-connections 
are difficult to study (see McNaughton and Morris, 1987, for 
a recent neuro-anatomical study of synaptic enhancement and 
learning). However, the computational plausibility of his 
suggestion has gained significant support over the years.

Edmonds and Minsky (see Minsky, 1954) implemented the first 
attempt to test the validity of Hebb’s ideas. Unable to make
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a formal mathematical demonstration and without computer 
resources, they built a partly mechanical, partly electronic 
machine, which, through a feedback process, could exhibit 
elementary learning. Their machine was never completely 
operational and although no firm conclusions were extracted 
from their work it captivated the imagination of researchers: 
here was a possible implementation of a self-regulating 
artificial learning device based on the same principle 
postulated by Hebb to explain neural adaptation.

After several years of work Rosenblatt (1959, 1962) proposed 
the first implementation of an adaptive network. He developed 
the percept ron, a device that could solve perceptual 
classification problems efficiently. Made of a set of n 
visible units connected through weighted links to a single 
integration unit, the device could exhibit learning through 
modification of its weighted links. The working principle of 
the device is simple. Each visible unit has a certain number 
of input lines organized on an array R, defining a perceptual 
field on which inputs are presented. The input lines of any 
visible unit cover a subregion or the whole input field and 
respond to a specific input arrangement on the array acting 
as a feature predicate. The activity of these visible units 

defines a vector

e / • • • t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

9

where ei is the activation of unit i. The integrator unit is 

usually a simple binary response element: its response is 1 
(the unit "fires") if the summation of the input signals is 
greater than a certain threshold and 0 (the unit is 
"quiescent") otherwise.

When the system makes a classification error, the weights are 
changed to lower the probability that the same error will 
recur. This is implemented by the perceptron learning 
algorithm. Rosenblatt proved that for a stimulus set P which 
is linearly separable into two subsets F" and F+ (i.e. F can 
be divided by a hyperplane) the learning algorithm guarantees 
that the classification will be learned in a finite number of 
learning trials (see Hinton & Anderson, 1981, for a 
discussion).

Initially, the perceptron learning theorem created 
considerable enthusiasm for "neural network" research. 
Rosenblatt (1959) even stated in a controversial paper that 
"... the perceptron establishes, beyond doubt, the 
feasibility and principle of a non-human system which may 
embody cognitive functions...". This assertion generated a 
large controversy which subsided ten years later with the 
publication of Minsky and Papert's (1969, 1988) Perceptrons. 
This book summarizes research carried out throughout the 
sixties by the authors, both extending Rosenblatt's work and 
clearly stating the limits of the perceptron. First, Minsky 
and Papert demonstrated that it is impossible to use the
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i perceptron learning algorithm in adaptative multi-layered

networks. A multi-layer perceptron is a network where the 
output of one layer of perceptrons is the input to another 
layer of perceptrons. A single layer perceptron can only 
perform (binary) linear classification. It appears that most 
interesting cognitive processes involve n-valued, n>2, non­
linear classifications. Minsky and Papert also emphasize the 
unrealistic psychological aspect of perceptron learning 
whereby the system learns only from errors; the learning 
algorithm has no provision for adaptive changes when the net 
gives the correct classification.

Minsky and Papert's book had a devastating effect on 
connectionism (see Pollack's, 1989, book review of the 1988 
Revised Edition). Most researchers dropped connectionism and 
turned to the very efficient, and at the time extremely 
popular, new information processing approach, based on the 
manipulation of symbol structures, and most fully articulated 
by Newell and Simon (1963). Later work has shown that the 
research community overreacted; the perceptron can be 
improved. Almost twenty years after the Minsky and Papert 
book appeared, Rumelhart and Zipser (1985) proposed 
"competitive learning", a generalization of the perceptron 
learning algorithm for multi-layered networks. This work was 
expanded and reformulated by Rumelhart, Hinton and Williams 
(1986) and led to the back-propagation learning algorithm.

I
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There are four reasons for the reemergence of connectionism 
in the late seventies. First, the development and 
availability of very powerful cheap computers allowed 
simulation, once an exotic and very expensive tool, to become 
a commonly used technique. Second, the accumulating data on 
the neuro-anatomical functioning of the brain reinforced the 
viewpoint that cognition is based on a massively parallel 
system. Third, with the development of large scale parallel 
computers a new software approach needed to be imagined. 
Finally, cognitive scientists were faced with the limitations 
of the serial rule-based models in domains such as vision and 
language processing.

While Hebb was developing the idea of cells assemblies, Gabor 
(1948, 1949) invented holography. This is a process used to 
encode the interference pattern of two beams of coherent 
monochromatic light in a translucent sensitive plate. When 
the two beams are refracted images of two objects, subsequent 
illumination of the sensitive plate with one of the original 
images reveals the other one, making the holograph an 
associative memory device.

Gabor (1968a) proposed in an optimistic paper that holography 
be used as a model of memory. First, he emphasized that 
holograms are resistant to local damage: if part of the
sensitive plate is destroyed, the system still responds 
though the recall might be degraded. Second, Gabor pointed 
out that holograms can encode, on the same plate, different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

12

associations; he claimed that recall could then be done with 
little interference between associations. Lastly, he remarked 
that holograms are bi-directional: either element of the
associated pair can cue the recall of the other one. Using 
auto-associations, the hologram can thus act as a content- 
addressable memory, where partial input cues the 
reconstruction of whole patterns.

Much later, the concept of holographic memory was extended 
and generalized to convolution memory by Ratcliff & Murdock 
(1976), Murdock (1982) and Eich (1982). These extensions 
provided the ground work for better mathematical analysis, 
and allowed one to study and formalize the characteristics 
and limits of these memory models. I now summarize briefly 
the mathematical principles of holographic and convolution 
memory.

Let f(t) and g(t) be the continuous distributions over time 
(or space) of two different processes and let c(t) be the 
convolution of these processes i.e.

c (t) = f(t)*g(t)

where * represents the convolution operator. Correlation of 
the resulting convolution with one of the original patterns 
allows recall of the other since

f (t) = g(t) ' c (t)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

13

^  and

g(t) = f(t) ' c(t) .

where ' is the correlation operator. If the stimuli are 
discrete vectors of fixed length n, the association 
(convolution) between two vectors a= (ai,..,an) and b= 
(bi,..,bn) is given by

n
c = a*b = X aibi 

1-1

(for futher details, see the discussion of the matrix model 
in the following section).

Although at first very appealing, simulation experiments 
carried out on convolution and holographic memory systems 
have showed that the recall process induces a high level of 
noise (see discussion by Hinton & Anderson, 1981). 
Furthermore, a detailed study of holographic memories by 
Longuet-Higgins (1968) demonstrated that the amount of 
information which can be superimposed is very limited and 
that the resistance to local damage is quite small. Pike 
(1984) reached similar conclusions about convolution models. 
He proved very clearly that matrix models are simpler, show 
better signal-noise ratios and are neuro-anatomically more 
realistic. Thus, I now turn to these matrix models.

!
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2.2. Matrix models and the Brain-State-in-a-Box (BSB) 
Model

The matrix models were mainly developed by Anderson, 
Silverstein, Ritz & Jones (1977), Anderson (1983), Hinton & 
Anderson (1981) and Kohonen (1977). In its simplest version, 
a matrix model is the discrete equivalent of the convolution 
model where the analogue sensitive medium is replaced by a 
discrete n by n array. I will describe this approach in some 
detail since it is an important step in the evolution of 
connectionism and also because I will refer to matrix models 
later in the thesis.

The basic idea behind matrix models is to represent the 

activity of a network of n simple processing elements by an 
n-dimensional state vector V,

V = (vi,... vn).i

Each element of the state vector represents the activity of 
one of the units. The activity level is analogous to a firing 
rate. A square n by n matrix A represents the 
interconnections of the elements with aik being the strength 

of the weighted link from unit i to unit k. This matrix is

•̂On notation: V designates the state vector, Vj_ 
the element i of the state vector V and V[t] 
the state vector at time t.
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assumed to be symmetrical (&ik = a^i) for mathematical 
simplicity, although this constraint can be relaxed. All 
units are assumed connected to all others although, again, 
this assumption can be weakened; in particular the main 
diagonal of A, which represents the connections of each unit 
to itself, can be arbitrarily set to zero.

A system "step" is expressed as

V[t+1] = AV[t]

where V[t + 1] is the state vector at time t + 1 and V[t] 
represents the state vector at time t. The activation of any 
specific unit i is given by

n
v i = v m.

m-1

The system is assumed asynchronous (this means that the 
serial updating order of the activity is theoretically 
irrelevant) and transmission time across units is considered 
negligible. Making the unit non-linear by, say, the addition 
of a threshold mechanism such as

Vi = max (0, vi - hi),

where hi is the threshold of unit i, significantly reduces 

the total amount of noise in the network (Hinton & Anderson, 
1981) . The threshold mechanism can easily be implemented with
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a true unit eh with fixed activity which is connected to all 

other units of the network in an inhibitory manner (Hopfield, 
1986). Thresholds can be changed through modification of the 
strength of connections with the true unit.

Anderson et al. (1977) extended the threshold non-linearity
by introducing range limits that bound the activity of the 
units in the range [-1, 1]. The lower bound is the minimum 
activity, whereas the upper bound is the maximum activity and 
0 the spontaneous (resting) level of activity. The range 
[-1, 1] is a convenient value that simplifies the
computations since the correlation of the activities of any 
two units can then be estimated through simple 
multiplication.

Matrix models allow easy implementation of Hebb's 
correlational hypothesis of associative learning — namely, 
that the strength of the connection between two units changes 
proportionally to the correlation of their activity, i.e.

Aaik = (vi*vjc)a, i,k = 1, ..., n,

where Aaik is the change in connectivity between unit i and k 
and a is a small nonnegative constant. In matrix notation we 

have

• AA = (Wt)a
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where V is the state vector, Vt its transpose, and AA the 
change in the connectivity matrix. Now, assume that we have a 
set of n orthogonal non-negative stimulus (or input) vectors 
fl» •••/ fnt each with norm I I fill = 1. Starting from zero 

weighted connections (A = 0) let

n
* - 13-1

where kj is the number of times pattern i has been presented.

Recall is done through post-multiplication of A with an input 
f j, and we readily see that with one of the orthogonal stimuli

Afj = kjfj.

This equation is familiar to the reader as the characteristic 
equation of A. The n independent input vectors are the 
eigenvectors of A with associated eigenvalues ki, ... kn. The 

more frequently an input is presented, the larger is its 
associated eigenvalue. This gives the model a useful property 
whereby the system responds more strongly to commonly 
presented patterns.

With real non-negative input vectors, all elements of A are 
non-negative. On the other hand, if the state vector V 
represents deviation from an average activity level such that 
fj is made of positive and negative values, and if the 

assumption of orthogonality of the input vectors is relaxed,
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then the matrix A would have an arbitrary positive semi- 
definite (all eigenvalues greater or equal to zero) 
structure. Let's redefine the input vectors such that for any 
f j we have:

h
X * '

^ . fc-i___

where fi', fh1 are arbitrary n-dimensional vectors; thus
each element of fj is the deviation of the activity from the 

mean activity over all the inputs. The quadratic form

AA = fjf jt

then represents an increase or a decrease of connectivity. 
Units with highly correlated activities will tend to build 
excitatory (positive) links while negatively correlated units 
will develop inhibitory (negative) connections.

The matrix

n
A = 2  kjfjf)',

3-1

is a scalar multiple of the covariance matrix £ of the 

inputs, where

n n n

i-1 i-l . -1
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with pi the relative frequency of input vector fi. Since the 

matrix A is positive semi-definite, we know that the 
eigenvectors of A form a basis set of the input space 
(Morrison, 1967) and thus each input vector f* can be

expressed as a linear combination of the eigenvectors of A, 
i.e.

n
fk = X  Ckiei

i-l

where ei are the eigenvectors of A, and cici are constants 
corresponding to the contribution of ei to the input pattern 
fk. After presentation and learning of a set of input 

vectors, the presentation of any partial or deteriorated 
vector f will lead to a reconstructive process which is 
described below. Maximum response is achieved when the input 
vector is an eigenvector of the network. As suggested by 
Anderson et al. (1977), the eigenvectors are taken to 
represent the distinctive features of the inputs and 
represent the regularities in the input space. These authors 
also claim that such regularities are psychologically 
meaningful.

Such a matrix device can perfectly store a set of n 
orthogonal patterns where n is the number of (input) units in 
the network. With arbitrary patterns, the matrix model 
develops a set of orthogonal archetypes corresponding to the 
underlying regularities in the stimulus set. We will now
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discuss a direct extension of the matrix model, the Brain-

State-in-a-Box (BSB) model, first proposed by Anderson et al.
* (1977), which takes advantage of this characteristic and uses¥

feedback to reconstruct a whole feature vector from partial 
! input. I now review Anderson's BSB model.
6
‘ Suppose we have a network with connection matrix A and input

vector f. Assume that

V(t+1) = V (t) +AV(t) (2.1)5

/

5
; = (i+A) v  (t)

where V(t + 1) is the state vector at time t + 1 and I the 
identity matrix. Following presentation of the vector V, the 
state vector will monotonically grow with iterative use of 
Equation 2.1 (Anderson et al., 1977; Golden, 1985). If the 
input vector is an eigenvector of A, the state vector will 
get longer without changing direction, whereas if the input 
vector is an arbitrary vector, the state vector will grow and 
change direction as a result of being "attracted" by the 
eigenvectors with large associated eigenvalues.

If we bound the activity of the units in a range [-C, +C], 
C>0, the limits of activation define a box in the 
n-dimensional space. The state vector grows when provided 
with an arbitrary input vector. At some point the vector will•-v
encounter a "wall" of the box, i.e. a unit has reached its

i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

21

£̂  maximum activation. The vector will continue to grow,
following the wall until it reaches another wall and will 
eventually end up in one of the 2n corners, where each unit is 
either at its maximum or minimum level of activity. The 
corner might be a stable corner (see below) in which case the 
vector will remain there; otherwise, the vector will progress 
to another corner. If a corner is stable, the contra-lateral 
corner is also.

What defines stable corners? The matrix A has n eigenvectors 
with corresponding non-null eigenvalues. For each one there 
is at least one pair of contra-lateral stable corners 
(Golden, 1986). Stable corners are closely related to the 
distinctive features of the input vectors, as well as the 
dimensionality of the space (Proulx, 1986). Let's consider 
the Hopfield-Tank energy function (Hopfield & Tank, 1985):

s = _ 1 I I wikfifk2 1 k

where wj.k is the weighted link between units i and k and fi 

the activation of unit i. The feed-back process which leads 
the state vector to grow corresponds to a gradient descent on 
the surface of this energy function (Golden, 1986), with 
stable corners corresponding to some minimum energy level.

Such networks act as input classifiers and the input space is 
divided into attraction- regions with determined boundaries. 
The network is insensitive to within region differences but
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discriminates perfectly between two stimuli placed on 
different sides of a boundary.

Because of its auto-associative properties, the Brain-State- 
in-a-Box model is a useful model of classification learning 
in tasks such as letter perception (Anderson, 1983), word 
recognition (Golden, 1985), image recognition (Kohonen, 1984) 
and semantic processing (Kawamoto & Anderson, 1984). On the 
other hand the correlational learning algorithm has limited 
power — for instance, the BSB model cannot solve problems 
such as "exclusive or" or "parity" (Rumelhart et al., 1986) . 
Nonetheless it has the advantage of doing "real time" 
reconstruction of partial inputs, which is a characteristic 
shared by few connectionist architectures.

To extend the application of connectionist networks to more 
complex tasks, such as "exclusive or" classifications, 
Rumelhart, Hinton and Williams (1986) introduced the feed­
forward network and the back-propagation learning algorithm. 
I now describe their work which overcomes the limits of the 
previously described architecture.

2.3. Faed-forward networks and tha back-propagation 
learning algorithm

After the publication of the book "PDP processing: 
Explorations in the Microstructure of Cognition" by 
McClelland and Rumelhart in 1986, the connectionist field 
literally exploded. The book summarized most of the
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t connectionist work under development at that time and 
introduced a new learning algorithm for layered networks: the 
back-propagation learning algorithm. This is a generalized 
non-linear version of the delta-rule (Widrow & Hoff, 1960) 
and of the perceptron learning algorithm (Minsky & Papert, 
1968, 1988) . It resolves the following credit assignment

problem encountered with layered networks: when a network 
made of layered perceptrons makes a classification error, the 
difficulty is to determine which perceptrons from the 
previous layers are responsible for the mistake and thus 
should be modified. Back-propagation resolved this problem 
and proved to be so powerful that it suddenly opened up a 
vast array of new applications.

A schematic view of a feed-forward network is presented in 
Figure 2.1 In this network each unit in a layer connects to 
each unit in the next layer but there are no connections 
within a layer or "backward" from a "higher" to a "lower" 
layer. There are three types of units: input, hidden, and 
output. Input units are those for which the activity is 
determined by outside input; output units are units for which 
the activity is taken as response; the remaining units are 
the hidden units. Activation spreads forward through the 
layers and the network which can have either no or several 
layers of hidden units.

1
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f The weighted links (or weights) of the network are positive 
(excitatory) or negative (inhibitory) real numbers. The 
activity (or output) Oi of any unit i is given by

Oi = f(neti)

where f is a nonlinear (usually differentiable) function, and 
neti is the net input to unit i defined as

neti — 5^w imOm
m

where wim is a weighted unidirectional link from unit m to 
unit i and om output from unit m. The function f is a 

squashing function which bounds the activity of the unit in a 
specific range. The most commonly used squashing function is 
the logistic function

f(x) = 1l+e-x (2.1)

proposed by Rumelhart, Hinton and Williams (1986) . A plot of 
this function is shown in Figure 2.2. It is a simple semi- 
linear function with activity in the interval [0,1] . For 
positive net input the output of the unit is greater than 
0.5, and for negative net input the output is smaller than 
0.5. Alternative squashing functions that have been used 
include the sine and Gaussian functions (LeCun, 1989) . To 
reduce the noise in the network and increase the resolving 
power, thresholds are generally added to the units. As
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mentioned earlier, the threshold mechanism can easily be 
implemented with a true unit with fixed activity which is 
connected to all other units of the network in an inhibitory 
manner as proposed by Hopfield (1986); thresholds can be 
changed through modification of the strength of connections 
with the true unit.

The feed-forward network is essentially a mapping device. Its 
purpose is to map each stimulus Si, i=l,..,n, to the 
associated desired response Ri, i=l,..,n. This architecture 

is in essence behavioristic and has no provision for dynamic 
processes. This means that for a network with specific 
weighted links a given stimulus will always produce the same 
response with the same latency (which is the time needed for 
the activation to spread through the layers of the network). 
Notice that with the feed-forward network, the unit 
activations must be updated in specific order one layer at a 
time.

The standard method used to adjust the weighted links in a 
feed-forward network is the back-propagat ion learning 
algorithm (Rumelhart et al., 1986). This is a least mean- 
square error fitting method. The goal is to iteratively 
minimize an error criterion such that presentation of stimuli 
Si will lead to response Ri for each i. Because this 

statistical fitting process is based on recurrent 
presentations of a finite set of exemplars it is often 
referred to as a learning process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

26

Let the current error associated with Sp/Rp, the 
stimulus/response pair p, be

ep = \ ^ (tP3 “ °P:>2 
j=i

where 0pj is the activity of the output unit j given pattern p 
and Tpj is the target or desired output for that unit, and g 

is the number of output units. The overall mean-square error 
£ computed across patterns is then

i n 
p-i

where n is th number of patterns. Now consider £ as a 
function of the network weights: £= g (wj.2, W13, W14. . . ) where 
wij is a connection from unit i to unit j in the feed-forward 
net. To minimize £, we need to solve, for all ŵ j, the 

following differential equation

0 .dwij

The non-linearity of this function (due to the nonlinear 
squashing function) makes resolving this equation non­
trivial. A more practical approach is to attempt to 
iteratively decrease £ by following the steepest gradient on 

the error surface. The network is initially set up with small 
random weights and then, for any weight wij at any learning 
trial, the change Awij in Wj.j is set proportional to
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where a is a small constant which controls the learning rate 

(the step size on the error surface) . These small steps made 
on the error surface are always toward lower levels of error 
and iteratively develop a weight structure associated with 
minimum level of error (Rumelhart et al., 1986).

To evaluate this derivative the squashing function f must be 
a differentiable function. Then using the chain rule, we 
obtain a general recursive formulation which allows us to 
assign a relative error score 5kj to each unit j in any layer

k of the network (for a detail description see Rumelhart et 
al., 1986). After differentiation and some algebra this 
yields for any unit j in layer k given pattern p:

8kj= (Tkj ~ Ok j ) f 1 (neticj) 

if j is an output unit and

8kj= f ' (netkj) X  8(k+l)r W(k+l)r.
r

f
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otherwise. The value 8kj is the contribution of unit j in 
layer k to the mean-squares error (£) .

In these equations f' is the derivative of the squashing 
function f which for Equation 2.1 is given by

f' (x) = f (x) (1-f (X) ) .

For a specific weight wij connecting unit i in layer k-1 with 

unit j in layer k the weight update after presenting 
stimulus/response pair p is

A wij = -a Skj f (net (k-i, j) . (2 .2)

As can be seen, the error score is propagated backward in the 
network. Once the error criterion 8kj is computed for all

units the weight update for wij is done following Equation 2.2 
where a is a small constant controlling learning rate.

Feed-forward nets with the back-propagation learning 
algorithm are extremely powerful mapping devices. The non- 
linearity makes it difficult to establish what can and can't 
be learned given a particular net. At most, some researchers 
(Volper & Hampson, 1987; Hornik, Stinchcombe, & White, 1988; 
Baum & Haussler, 1989) have established upper bounds on the 
number of patterns that can be learned by a feed-forward 
network of particular size given a specific task.
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1 Feed-forward nets with the back-propagation learning 
algorithm are a special case of multivariate non-linear 
regression with the hidden units interpreted as latent 
variables (LeCun, 1988). Rumelhart et al. (1 986) refer to
hidden units as the "internal representation". Since, 
generally, the number of hidden units is smaller than the 
number of input units, the network does some dimensionality 
reduction on the input space. We have direct access to this 
representation and can therefore try to make it meaningful. 
For instance, Sanger (1989) proposed a statistical approach 
that he called contribution analysis which is similar to 
cluster analysis; while Rosenberg (1987) developed an 
analogous technique that he used to interpret the hidden unit 
representation built by NetTalk (Sejnowski & Rosenberg, 
1986), a network that maps English orthography to phonemic. 
Interestingly enough, while the goal of several statistical 
approaches such as multidimensional scaling is to infer the 
psychological unobservable representation, feed-forward 
networks provide direct access to the internal 
representations developed by the model.

A unit of the feed-forward net performs computations similar 
to that involved in logistic regression (Conover, 1973). In 
both cases the model yields an output value (probability of 
group membership) between 0 and 1 depending on a set of 
inputs (covariates) and weights (coefficients) . The main

f difference is that logistic regression generally involves the
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maximum likelihood rather than t"he least mean-square error 
method. No maximum likelihood estimation method has been 
developed for layered networks, probably because the 
recursive formulation involved makes the mathematics fairly 
complex.

If the non-linearity is removed, the unit reduces to a simple 
linear regression operator. If we take a whole linear feed­
forward network and use the back-propagation algorithm it 
reduces to principal components analysis when the response 
vectors are mirror images of the stimulus vectors and to 
canonical correlation for arbitrary response vectors (LeCun, 
1988; Hornik et al., 1988). In both cases the hidden units 
can be directly interpreted as latent variables.

2.4. An application of faed-forward networks to the 
encoder problem

This section is devoted to the study of the encoder problem, 
a task proposed by Ackley, Hinton and Sejnowski (1985) to 
evaluate the learning performance of connectionist networks. 
This fairly complex task is often used as a benchmark to test 
the power and the efficiency of learning algorithms. For any 
specific input/target pair both vectors are identical. In 
most implementations the number of hidden units is small and 
the task involves coding a set of binary vectors through a 
small set of real-valued activation levels. The encoder 
problem is similar to an identification task which involves n
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simple stimulus/response pairs. The results reported here 
will be used later as a comparison basis when a more 
elaborate model of identification is presented.

I implement the encoder problem in a three layer 
back-propagation feed-forward network. Four independent 
variables are of interest: the set size, the number of hidden 
units, the number of learning trials and the learning rate. 
One dependent variable will be considered: the mean-square 
error (MSE) computed at the output of the network.

The n stimuli (respectively, n responses) are represented as 
n binary-valued, mutually orthogonal input (respectively, 
target) vectors, i.e.:

INPUT TARGET
[1000...0 ] [1000 ...0]
[0100...0] [0100...0]
[0 0 1 0...0 ] [0 0 1 0...0]
[0001...0 ] [0001...0]

• •
• •
• •

[0000...1] [0000...1].

The number of input (respectively, output) units used to 
implement the task is n, the number of stimulus/response 
pairs.

The simulation results presented here are based on a single 
realization of each simulation. For each simulation the 
initial weights were assigned small random values in the 
interval [-0.5, 0.5]. Although the initial weights are small, 
any specific starting set of weights affects the subsequent
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learning process (see Kolen & Pollack, 1990, for a 
discussion); unfortunately, as mentioned earlier, the long 
duration of each simulation prevented me from rerunning each 
simulation several times with different small initial random 

weights.

To assess the effect of the three independent variables, I 
ran simulations of networks implementing the encoder problem 
for set sizes from 4 to 64 with 1 to 4 hidden units. Standard 
back-propagation was used. All simulations were performed for 
a total of 10 000 epochs: an epoch consists of one 
presentation of each element of the stimulus set. The 
(asymptotic) MSE computed at the end of the learning process 
provides a direct basis for comparison between results for 
different set sizes and various numbers of hidden units.

Effect of learning rate. The learning rate is a constant 
that controls the step size during the gradient descent. Two 
preliminary series of simulations were performed with sets of 
8 and 16 stimuli and with two hidden units. Various learning 
rates a were used. Figures 2.3 and 2.4 present the change in 
MSE as a function of the epoch number for a = 0.05, 0.45 and 

0.952. As can be seen, changing the learning rate simply

2The epochs are numbered using scientific 
notation where ^  means i»103, e.g. e£ means

102=100, means 3»103=3000, etc...
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changes the speed at which the performance improves, with a 
ceiling for a>0.45. One problem reported by Rumelhart et al, 
(1986) for large step sizes (i.e. large a) is an oscillating 

behavior of the weight structure, preventing the network from 
reaching a lower level of mean-square error; thus to avoid 
this problem one normally uses small learning rates. For this 
reason, and because the results reported here suggest that 
speed of learning does not increase for a > 0.45, the

learning rate used in most simulations with the feed-forward 
network reported in this thesis is a=0.45.

Results on learning. Figures 2.5 to 2.8 display on a log- 
log plot the change of the MSE through learning for networks 
with from 1 to 4 hidden units and various set sizes. Except 
for a plateau at the beginning the curves present relatively 
straight lines until they asymptote. Such straight lines 
curves on log-log plots are characteristic of the power law 
of learning (Newell & Rosenbloom, 1981). Although not 
perfect, these results suggest that back-propagation is a 
plausible model of this aspect of (cognitive) learning. In a 
subsequent section of this thesis I propose a modified 
version of the back-propagation learning algorithm that 
demonstrates a better fit to the behavioral data. The number 
of trials involved here might appear large compared to the 
numbers of trials in behavioral experiments; however, the 
learning trials in a connectionist implementation should be 
seen as "neural" updates and several such updates might
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f correspond to a single behavioral trial. When a human being
responds to a stimulus and gets feedback, it is conceivable
that several neural updates occur while the stimulus,
response and feedback are present in the attention span,
while in the connectionist implementation a single neural
update is performed after each presentation.

•«

Set size effect. As can be seen in Figure 2.9, for a fixed 
number of hidden units the MSE increases with the set size. 
These curves are similar to the behavioral curves observed 
for identification tasks (see Luce, 1986), although the 
behavioral data is based on performance indicators such as 
reaction time while the curves reported here involve mean- 
square error; however, as I discuss in a later section, mean- 
square error and reaction time are often correlated. Given a 
fixed number of hidden units the mean-square error increases 
and asymptotes as n increases, the main difference being that 
the behavioral data asymptote somewhere over n=10 whereas in 
the simulation reported here it asymptotes nearer n=30. I 
will demonstrate later that choosing the stimulus 
representation carefully leads to a better fit between the 
simulation and behavioral data.

Effoct of tho number of hidden units. As mentioned 
earlier the number of hidden units can be interpreted as the 
"dimensionality" of the internal representation built by the 
network. With higher dimensionality more complex mappings can 

** be learned. The results of Figure 2.9 are replotted in Figure
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2.10 to explicitly show that the MSE decreases as the number 
of hidden units increase.

Conclusion. This study of the encoder problem demonstrates 
that the mean-square error decreases with learning trials, 
decreases as the number of hidden units is increased, and 
increases as the set size is increased.

1
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CHAPTER 3
ABSOLUTE IDENTIFICATION:

AN OVERVIEW OF THE PARADIGM, DATA AND MODELS

Absolute identification is a task that involves mapping each 
element of a set of n simple stimuli to a corresponding 
element of a set of n simple responses. Usually, the stimulus 
and response dimensions are each unidimensional and one 
specific response (out of the n possible) is correct for each 
stimulus. The task is generally structured with repetitive 
trials, where on each trial one of the stimuli is randomly 
presented. The subject tries to give, as fast as possible, 
the corresponding correct response. As described in detail 
below, performance is measured through two dependent 
variables: probability correct (PC) which is the probability 
that a stimulus leads to a correct response and latency or 
reaction time (RT). Such performance depends on three main 
independent variables: the set size (the number of
stimulus/response pairs), the number of trials performed and 
(in some cases) the sensorial range along which the stimuli 
are spread.

3.1. Behavioral phenomena

Here I describe five well documented basic behavioral 
phenomena linking performance with the independent variables. 
First, the subject's reaction time depends on the set size 
(Merkel, 1885; Hick, 1952; Laming, 1966); there is one major 
exception to this statement (see later) . As can be seen in
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Figure 3.1, reporting Merkel's (1885) data, the reaction time 
increases as n increases and (might) asymptote around n=10.

Many variants of absolute identification involving different 
perceptual and response modalities are described in the 
literature. Stimuli can be lights, digits on a screen or pure 
tones. Responses can be motor or verbal. The magnitude of the 
functional relation linking set size and performance depends 
on the stimulus and response modalities and the extent to 
which the responses are a natural mapping of the stimuli. 
This latter constraint is called mental compatibility by Luce 
(1986) - for example, a digit-voice mapping is more
compatible than a digit-key mapping. A survey of the 
literature by Teichner & Krebs (1974) showed that 
compatibility plays an important role in the phenomenon; 
Figure 3.2, adapted1 from Teichner & Krebs (1974), 
demonstrates that the standard relation between set size and 
latency does not hold for compatible stimuli when both the 
stimuli and responses are complex (e.g. visual and spoken 
digits).

Also, Theios (1975) performed an experiment designed to 
establish further the effect of mental compatibility. Figure
3.3, adapted from Theios (1975), presents the relation

I b e t t e r s  are used on the plots instead of 
symbols because of limitations of the graphics 
software.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

38

between latencies and set size with compatible (naming) and 
incompatible (button) responses for complex stimuli (digits) . 
As can be seen, the curve is flatter for the compatible and 
complex stimuli/responses.

The second main phenomenon links the subject's performance to 
the number of trials performed and is known as the power law 
of practice (Newell & Rosenbloom, 1981). Drawn on a log-log 
plot, the learning curve is usually linear, possibly 
asymptoting for a large number of trials. Figure 3.4, adapted 
from Kolers (1975), shows such a log-log plot for a simple 
reading task. The power law of practice is a ubiquitous 
learning phenomenon observed in most (if not all) activities 
where practice plays a role - for instance in 
perceptual/motor skills (Snoddy, 1926/ Crossman, 1958); 
perception (Kolers, 1975; Neisser, Novick & Lazar, 1963), 
discrimination tasks (Seibel, 1963), memory (Ratcliff, 1978, 
Anderson, 1982), routine cognitive skills (Moran, 1980), 
problem solving (Neves & Anderson, 1981) and automatization 
(Logan, 1988) .

The basic form of power law of practice is

Perf = bN"c

where Perf is a performance indicator such as mean reaction 
time, b the "amount" to be learned which is the difference 
between performance at the beginning of learning and perfect
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performance, N the number of trials performed and c a 
positive constant specific to the process under study. 
However, for real data, the minimum of the curve is likely 
not to be 0, and thus an asymptote will be observed on the 
log-log plot. To incorporate '.nis effect and to take into 
account other effects of practice anterior to the experiment, 
the power law can be generalized to

Perf = A + b(N-E)“c.

where A is an absolute minimum greater than (or equal to) 0, 
and E is some level of practice already acquired. For the 
purpose of the work reported here simple curve fitting using 
log-log plots will be used, and thus we can expect the curves 
to reach an asymptote for a large number of learning trials.

The third main phenomenon links set size and the amount of 
information transmitted. As the set size increases, the 
amount of information transmitted (the quantity T in 
Shannon's (1948) theory of information) increases and 
asymptotes with a possible decrease for large stimulus set 
sizes (Pollack, 1953; Garner, 1953; Luce 1986). Figure 3.5 
presents the Pollack (1953) and Garner (1953) data which show 
the functional relation between set size and information 

transmitted for absolute identification of pure tones of 
equal intensity equally spaced over a frequency range 
(Pollack data) and over a fixed intensity range for a fixed
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(1000 Hz.) frequency (Garner data). The amount of information 
transmitted is generally evaluated from the stimulus/response 
matrix. This array has a diagonal configuration (something 
like a Toeplitz structure; Jenkin & Watts, 1968) with larger 
values on the main diagonal smoothly decreasing away from the 
main diagonal. As the set size increases, the performance 
deteriorates and the "width" of the diagonal band gets 
larger.

While Pollack concluded that the total frequency range along 
which the stimuli are spread has negligible effect on the 
amount of information transmitted, Garner demonstrated that 
the intensity range plays an important role. For tasks such 
as absolute identification of intensity of pure tones, the 
amount of information transmitted also increases as the 
separation (larger perceptual range) of the stimuli increases 
(Garner, 1953, Green & Swets, 1966), but asymptotes as the 
range gets larger. For visual stimuli, such as lights at 
different spatial locations or digits, which form most of the 
behavioral data, range is not one of the main independent 
variables, providing that the stimuli are not clustered 
together (Teichner & Krebs, 1974).

The end anchor effect (Marley & Cook 1984), also called the 
serial order effect (Vickers, 1979) is another phenomenon 
observed given a fixed set size and unidimensional stimuli. 
Performance (as measured by d') is better for 
stimuli/responses at the ends of the range.
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Finally, there are additional data concerning the effect of 
sequential dependencies in the presentation of the stimuli 
(Laming, 1968; Ward and Lockhead, 1970; Luce, 1986). Such 
sequential effects are not discussed in this thesis.

3.2. Non-connectionist models of absolute 
identification

Two main (non-connectionist) processing architectures have 
been proposed for modeling choice and reaction time in 
absolute identification: serial and parallel (Vickers, 1979; 
Townsend & Ashby, 1983; Luce, 1986).

The serial architecture. Donders (see 1969 paper), was in 
1868, the first known experimentalist to study reaction time 
in identification tasks. Donders classified choice 
experiments into three types a, b and c. In each case the 
subject is instructed to respond as quickly as possible to 
some stimulus. An a-reaction experiment involves the 
presentation of one stimulus for which there is only one 
correct response. A b-reaction experiment involves the 
presentation of one out of n possible stimuli, each stimulus 
being associated with one specific correct response. In a 
c-reaction experiment, a set of n stimuli is used, but the 
subject is instructed to make a particular response to only 
one of the stimuli, not responding at all to the other 
stimuli when they are presented. Donders studied all three 
experimental paradigms with various stimulus set sizes. He
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found that for a given set size the mean reaction times 
associated with the three types of experiments have the 
following relation:

b-reaction > c-reaction > a-reaction.

Donders proposed that the difference between the latency in 
the c-reaction and a-reaction, i.e. RTc-RTa, is the time 
needed to identify which stimulus is presented; he believed 
that this identification process depended on several 
non-overlapping processes and that the reaction time 
difference is a monotonic function of the set size n.

Around the same time Merkel (1885) attempted to characterize 
the functional link between set size and latency in 
identification tasks. Using an experimental design where 
subjects had to identify a stimulus (letter or digit) 
presented on a screen by pressing a button, he established 
that the reaction time is proportional to the logarithm of 
the number of stimuli (n). In attempting to explain this log 
relation, Hick (1952), Crossman (1955), Welford (1960, 1968), 
and others, postulated that the identification process is 
based on a serial elimination process. The idea is that 
identification involves a series of sub-decisions, each one 
reducing the number of possible response alternatives. In its 
simplest form, the model postulates that the probability 
space is cut in half at each decision point until the
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^ response is found. This approach predicts that reaction time
is proportional to the logarithm (to base 2) of n. According 
to Hick, this elimination process is based on a feature 
decomposition approach with the sub-decisions being taken on 
the basis of the presence or absence of particular features.

Serial elimination models have three main limitations. First, 
the assumption of equal time for each sub-test can hardly be 
defended since finer sub-decisions should be more difficult 
to achieve and need longer processing time. Second, it is 
very difficult to establish the nature of the subdivisions 
used; if features are involved as suggested by Hick, what is 
their nature and how are they extracted from the stimuli? 
Finally, experimental data demonstrate the role of learning 
in identification tasks (see the review article by Teichner & 
Krebs, 1974) . With large amounts of learning the relation 
between response time and set size becomes flatter and might 
tend toward a zero slope (Welford, 1968); the serial 
elimination model cannot account for this learning effect 
since, despite practice, the number of decisions involved 
remains fixed, being larger for larger set sizes.

The parallel architecture. Parallel architectures have 
been proposed by Christie & Luce (1956), Rapoport (1959), 
Laming (1966), Vickers (1972, 1979), and others, and are
based on the idea that identification is performed through a 
set of concurrent parallel (independent) processes. Vickers

I (1979) proposes to classify parallel models of absolute

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

44

identification into two groups: 1) parallel elimination

models also known as parallel exhaustive search models (Luce, 
1986), and, 2) parallel eventuation models. Both groups of 
models assume that a set of n exemplars Vi, i=l,...,n, one 
for each of the n possible stimuli, Si, i=l,...,n is stored 
in memory. After presentation of a specific stimulus Si, 

simultaneous comparisons of the input with each exemplar are 
carried out. The parallel elimination model postulates that 
the response is supplied after all comparisons processes are 
finished, whereas the parallel eventuation model proposes 
that there is a race between several competing processes and 
the response is given when the first parallel process 
terminates. The processing time associated with each stimulus 
is assumed to follow a probability (generally Gaussian) 
distribution; if the same variance is assumed for each 
stimulus, then the parallel elimination model predicts a mean 
reaction time proportional to log2(n) (Vickers, 1979).

The main difficulty with the parallel elimination model is, 
like the serial model, its inability to explain learning 
phenomena. Vickers (1972, 197 9) demonstrated, with simulation 
experiments, that parallel elimination cannot explain the 
change in slope, linking set size and reaction time, observed 
as learning occurs. Neither making all processes faster nor 
changing the overall response criteria can adequately match 
the behavioral phenomenon. This is why Vickers proposed the 
parallel eventuation model where several processes are racing
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to respond. In this conceptualization, all competitive 
processes have adaptive capabilities, which allows the model 
to replicate the observed learning curves. Additionally, 
Vickers proposed a version of the eventuation model with 
limited resources (a fixed number of parallel processes) 
which could also predict serial order (end anchor) effects. 
Because it explains set size, learning and anchor effects 
this is currently the best non-connectionist model in this 
domain.

4
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CHAPTER 4
A CONNECTIONIST MODEL OF ABSOLUTE IDENTIFICATION

4.1. Learning assumptions

In the first part of this section I will demonstrate that 
back-propagation, although very powerful, might not be suited 
to modeling cognitive learning in identification tasks. The 
problem concerns the way the network resources are allocated 
throughout learning. After illustrating this difficulty, I 
propose a modified version of the back-propagation learning 
algorithm that is better able to model cognitive learning in 
identification tasks.

Back-propagation minimizes the mean-square error computed at 
the output of a feed-forward net. To do this the weighted 
links of the network are modified following the direction of 
the steepest gradient computed on the error surface defined 
in the weighted links space (see Section 2.3) . When the 
resources (i.e. the number of hidden units) are large 
relative to the number of stimulus/response pairs, the 
network learns the task readily and performs very well on the 
whole stimulus set. This was shown in Chapter 2 where I 
looked at the encoder problem.

In those simulations the mean-square error decreased 
monotonically as a function of the number of learning trials 
until it asymptoted, with the slope of the learning curve 
decreasing as the set size increased (for a fixed number of
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hidden units). These characteristics can erroneously lead one 
to conclude that the learning process and the performance of 
the network, degrade smoothly as a function of the set size. 
As I now show, this is not necessarily the case.

Figure 4.1 and 4.2 present the overall mean-square error 
(computed over the stimulus set), and the squared error for 
each individual stimulus, for the 16-stimulus encoder problem 
with 2 hidden units; the graphs report the error scores 
computed over 10 000 epochs where each epoch consists of one 
presentation of each of the 16 stimuli2. The graph of mean- 
square error shows the expected decrease over epochs. 
However, inspection of the graph for the individual square 
error associated with each stimulus shows a very different 
picture. Obviously, while the network does very well on some 
stimuli it performs very poorly on others. This is especially 
surprising since all the stimuli are equally "spaced" in the 
multidimensional representation (by binary, orthogonal 
vectors).

I ran additional simulations and did multiple replications 
varying the set size from 4 to 64 and the number of hidden 
units from 1 to 4. In all cases the starting weight values 
were small random numbers. These simulations show that, for

f 2On the figures the epoch scale is divided by 50 
(Epoch/50), e.g. 30 on the plotted scale 
corresponds to epoch 1500.
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the encoder problem, the number of stimuli learned correctly 
is roughly equal to 2h where h is the number of hidden units. 
As mentioned above, the back-propagation learning algorithm 
has the "ability" to ignore a subset of the stimuli - 
Rumelhart, Hinton & Williams (1986) called this the 
asymmetric learning ability of back-propagation. According to 
these authors back-propagation gains power from its ability 
to attain at first better performance on a subset of the 
stimuli and later extend it to the whole stimulus set; this 
is how, by learning one stimulus/response pair at a time, the 
feed-forward network, can learn the exclusive-or problem. This 
is surely a desirable characteristic if resources are large 
and if the goal is to find a solution which is as close as 
possible to the absolute minimum error, but it has the above 
(perhaps undesirable) side effect when resources are limited.

Also, when the goal is to model cognitive processes, finding 
the absolute minimum might not be adequate. Humans are not 
artificial systems which do perfectly, and the asymmetric 
learning strategy is certainly psychologically false — at 
least in simple absolute identification tasks with small set 
sizes. Behavioral data show that human beings allocate their 
resources over the stimulus set in these experiments in such 
a way that performance is to a significant extent the same 
over all the stimuli; one exception to this generalization 
being the end-anchor effect (Vickers, 1979; Marley & Cook, 
1984), but even here performance is not of the kind shown
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above for back-propagation. Finally, Logan (1988) reports 
some data on cognitive learning showing that the variance of 
the performance indicators computed across the stimulus set 
decreases with learning. Logan in his model of automatization 
postulates that both variance and mean of the performance 
indicator (latency) decrease.* following the same power curve. 
Obviously, in Figure 4.2 variance does not decrease with 
learning.

Hoskins (1989) proposed a modified version of the back- 
propagation learning algorithm that he called focused back- 
propagation. In this algorithm, the presentation probability 
of a given stimulus is made proportional to its associated 
square error. Hoskins presentation method is not compatible 
with actual experiments where stimuli are usually presented 
equally often. Hoskins introduced focused back-propagation to 
speed up the learning process and one desirable (for us) side 
effect of Hoskins approach Is to reduce discrepancies in the 
performance across the stimuli. On the other hand, focused 
back-propagation carries the locus of control for the 
learning process outside the system and requires extraneous 
control. The idea of giving more attention to stimuli for 
which the performance is not very good is certainly 
interesting but it should be implementable independently of 
the stimulus presentation probabilities. A way to achieve 
this would be to use an internal mechanism that ignores 
already learned stimuli when they are presented — this is
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essentially implemented in the technique that I propose 
below.

In another approach, Lisker (1989) proposed a learning 
algorithm that maximizes, following gradient ascent, the 
amount of information transmitted by the network. This agrees 
with behavioral data suggesting that human beings tend, 
within the limits of their abilities, to maximize the amount 
of information transmitted as they learn (Pollack, 1953) . 
Although appealing, Lisker's algorithm is both formally and 
computationally very complex which greatly limits its 
potential application.

I propose a modification to back-propagation which allocates 
the resources of the network in such a way that it tends to 
perform equally well on each member of the stimulus set. This 
new algorithm implements a form of selective attention — when 
a stimulus associated with a relatively large (respectively, 
small) square-error is presented the adaptive modification of 
the network is made larger (respectively, smaller) . The 
network thus "pays attention" to the (historical) 
characteristics of the presented stimulus and selectively 
changes its learning rate. Mean-variance back-propagation 
devotes more "attention" to a stimulus associated with larger 
square-error without requiring a change in presentation 
probability (as does focused back-propagation).
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With standard back-propagation the network tends first to 
learn a subset of the stimuli. The difference in squared 
error observed between the stimuli already learned and the 
others is large, giving a large variance for the squared 
error. The idea underlying my revised back-propagation is 
simply to attempt to keep this variance small through 
adaptive changes of the weighted links while, at the same 
time, keeping the overall mean-square error small. I first 
derive the necessary formula for the variance term, then 
combine those results with standard results for the mean- 
square error term.

Let

1 k
= 2" ^  (Tpi”0pi.)2

x-1 (4.1)

be the square-error for pattern p, where Tpi and Opi are, 

respectively, the target and observed output for unit i given 
stimulus p, and where k is the number of output units.

Let

E - r
r-1 (4.2)

be the overall mean-square error computed over the set of 
patterns,
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and let

VarE = £ X ( Eq-E}2
q-i (4.3)

1 n 1 n
q-1 r-1

be the variance of the squared error computed over the set of 
patterns. Assume for now that we want, through learning, to 
minimize this variance. The output vector depends on the 
input vector fed to the network and on the weighted links of 
the net. Consider VarE as a function of the weights of the 

network:

VarE = f(wn, wi2, wi3, ..., wnn)

where wj.j denotes the weighted link between unit i in layer k 
and unit j in layer k-1. To minimize VarE we will iteratively 

modify the weights by a small amount following the steepest 
gradient on this variance surface. The total derivative of 
the variance with respect to weight wj.j is:

c)VarE ^  5varE 9ep 
owTj - ~  . •

The right-most element of this equation is the partial 
derivative of the square error with respect to weight wij, 

given pattern p, which is the standard back-propagation error 

gradient.
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The first term inside the summation on the right hand side is 
(using Equations 4.1, 4.2 and 4.3)

9VarE _ 1_
n l

q*p
9Er

r-1

= “ (Ep - E) - £ I  {n2 ^   ̂ qn q-l E a - E }

*\A

= - (EP - E)

Thus, to adaptively reduce the variance after presentation of 
the stimulus/response pair p, change the weight Wij by the

amount

9VarE 8ep
■ ' *-5E 3wij

* 2 5Ep
= - X " <EP - «>

where X is a non-negative constant controlling the learning 

rate. Clearly minimizing the variance has a trivial solution: 
make the same response for all stimuli. However, the overall 
mean-square error would then be large. Thus, we will consider 
minimizing a weighted mixture of the mean-square error and 
the variance of the error, i.e. minimizing
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a£ + XVarE,

where a,X >0. Again, using the steepest gradient we obtain for

the change of weight wij after presentation of a

stimulus/response pair p

/ dVarE 3ep vAwij = - — -----+ a    ) .dwij dwij

/. dVarE dEp 3ep \
dEp dwij + a dwij

dEp f dVarE^
a + A,dwij  ̂ dEp )

1 / rp \
£- + X  - (Ep-E) J .dE

dw

i.e.

where

Awij = - — E- (a + y (Ep - E) )dwij

n

This equation can be seen as an implementation of a gradient 
descent with variable step size. Since the activity of every 
output unit is bound in the range [0, 1], both Ep and E are
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also bounded in [0, 1], thus the value of (Ep - £) is in the 
range [-1, 1] and for a > y

(a + Y (Ep - £) ) SO

Under that condition, steps are made larger (in absolute 
value) for patterns associated with square-error larger than 
£ and smaller (in absolute value) for patterns associated 
with square-error smaller than £.. If y is assigned a value 
larger than a, an oscillating behavior can be observed 

preventing the network from reaching lower levels of mean- 
square error. Most simulations reported in this thesis use 
the value a=0.45 and >.= 0.20 for which y < a for all n > 1.

As mentioned above, this mean-variance back-propagation 
learning algorithm can be seen as implementing a selective 
attention mechanism that allows the amount of weight change 
to depend on the relative performance achieved on a specific 
stimulus. Notice that for stimuli associated with small 
square-error the step sizes on the error surface are made 
smaller (in absolute value) leading to finer adjustment of 
the weight structure. This procedure is similar to other 
proposals such as simultaneous annealing (Kirkpatrick, Gellat 
& Vecchi, 1983). The simulation results presented next show 
that mean-variance back-propagation exhibits the general
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speed-up of learning that is characteristic of focused back- 
propagation (Hoskins, 1989).

Simulation results. As a first approximation to a model of 
absolute identification, I tested the above mean-variance 
back-propagation algorithm on several versions of the encoder 
problem varying the number of stimuli and the number of 
hidden units. Figures 4.3, 4.4 and 4.5, respectively, present 
the obtained mean-square errors as a function of epoch for 
the 4, 8 and 16-stimulus sets, respectively, with 2 hidden
units. The solid lines represents the MSB observed with 
standard back-propagation learning algorithm while the dashed 
line represents the results with mean-variance back- 
propagation. The learning parameters used where \=.20 and 
a=0.45. The simulations were run for a total of 2000 epochs.

The simulation results show that overall mean-variance back- 
propagation (MV-BP) initially gives faster learning, but when 
the stimulus set is large relative to the number of hidden 
units the MV-BP asymptotes faster and has a larger level of 
mean-square error. This can be explained by the absence of 
the asymmetric learning characteristic of the BP. A network 
using MV-BP would certainly have (like a human being) 
difficulties in learning exclusive-or contingencies since it 
will not be able to first attain better performance on a 
subset of the stimuli. Figures 4.6, 4.7 and 4.8,
respectively, present plots of the variance of the error 
computed over the stimulus set through learning for stimulus

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

I

57

sets size 4, 8 and 16. As expected, the variance observed for 
the MV-BP (dashed lines) stays small. Two additional 
comparisons were made: Tables 4.1 shows the amount of
information transmitted by the network and Table 4.2 shows 
the average probability of error. This latter statistic is 
computed over the final 500 learning epochs for set sizes 4,8 
and 16, respectively. Figure 4.9 and 4.10 plot these results. 
As can be seen, the amount of information transmitted is 
greater and the probability of error is smaller when MV-BP is 
used.

Conclusion. When applied to a network with a large amount of 
resources, i.e. a large number of hidden units, the mean- 
variance back-propagation learning algorithm yields learning 
curves similar to those observed with the standard back- 
propagation learning algorithm but with faster learning. When 
the new learning algorithm is used on a network with limited 
resources learning is still faster but performance asymptotes 
at a higher level of mean-square error. The proposed MV-BP 
learning algorithm might not find the best solution (in terms 
of minimizing mean-square error), but it is probably more 
adequate for modeling cognitive learning since it allocates 
the resources in such a way that performance tends to be 
similar on all stimuli.
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4.2. Architectural assumptions

The major behavioral data gathered on absolute identification 
are the response probabilities and the latencies. Building a 
connectionist model of absolute identification requires that 
one either choose predictors for latencies (e.g. mean-square 
error) or incorporate real-time processing into the 
architecture. Seidenberg & McClelland (1989), in their word 
recognition model, picked the first solution and used the 
mean-square error provided by a feed-forward network as a 
predictor of latencies. This approach was motivated by the 
assumption that the network is a partial implementation of a 
larger system, with the feed-forward network being a mapping 
device and with a subsequent decoding module (which they did 
not present) assumed to compute the response and thus induce 
latencies. In particular, Seidenberg & McClelland assumed 
that the larger the error for a given pattern, the longer (on 
average) will be the decoding time, and hence the response 
time, for that pattern. On the other hand, Cohen, Dunbar & 
McClelland (1990) superimposed a cascade structure 
(McClelland, 1979) over a feed-forward net in order to 
implement real-time processing; they demonstrated that their 
implementation could be used to accurately model latencies in 
Stroop effect paradigms.

To model latency data I use a hybrid architecture made of a 
mapping module (a feed-forward net) and a decoding (or 
decision) module (a feedback network) . This approach is
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different from the one developed by Cohen, Dunbar & 
McClelland since I implement the mapping and decoding 
processes in different structures.

Figure 4.11 gives a schematic view of the proposed 
architecture. The output of the mapping module is fed into 
the decision module which eventually produces the response. 
The identification task is here conceived as a dual process. 
First, a feed-forward network (the mapping device) computes, 
in a time fixed for all stimuli, a multi-dimensional real­
valued vector. The decoding module takes this output from the 
feed-forward network and make decisions on the presence or 
absence of the relevant "features". The network latency is 
provided in network steps by the decoding module. This 
structure is appealing since mapping and decision processes 
are implemented independently, and therefore to implement 
other tasks such as categorization, one simply uses a 
different decoding module.

Various decoding modules were tried in attempting to model 
reaction times in absolute identification. Three devices, 
each made of a single layer of units with recurrent 
connections, will be discussed here. In increasing order of 
complexity they are: 1) a network of simple integrators with 

thresholds similar to the cascade units proposed by 
McClelland (1979), 2) Koch-Ullman's winner-take-all network 
(Koch & Ullman, 1985) and 3) the Brain-State-in-a-Box matrix 
model (Anderson et al., 1977), previously discussed.
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4.2.1. A network of simple integrators with thresholds

A network of simple integrators with thresholds consists of a 
set of simple linear units each associated with a threshold 
detector. Thus, the response oi of unit i is given by

fo if Vi < 0
0i (.1 if Vi £ 0

where 0 is a threshold (or bias) common to all units and Vi 

is the net input to the unit. Each of the units is connected 
in a one-to-one fashion with one of the output units of the 
feed-forward network. The state vector V, which depends on 
feedback connections linking each unit with itself, is given 
by

V(t+1) = AV (t)

where A=Ig is the connection matrix, i.e.

A =

g 0 0 .
0 g 0 .
0 0 g .

. 0

. 0

. 0

0 0 0 0 g

with g controlling the gain of the integrators - larger g 
means faster responses. In all simulations involving 
integrators with threshold reported in this thesis and in 
order to obtain a reasonable range of values for decoding 
time, g is (arbitrarily) set to 1.05. The first unit to reach

I
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its threshold is taken as the response. In this race, since 
there are no within-layer connections, each of the n 
competitive processes are independent. Let O=[0i, ..., On] be

the output vector from the feed-forward network. If V[0]=O, 
then the unit i, for which Oj is the maximum of 0, will be 

the eventual winner of the race and the first to respond. The 
response time RT is a function of this maximum value of 0. 
This device takes decision on independent dimensions and is 
adequate to decode binary vectors where a non-zero value of 
element j of the vector represents stimulus j, and hence 
response j.

Finding the maximum of the output vector might appear 
trivial. Why not just select the "instantaneous" maximum — 
i.e. the unit at time zero that achieves the maximum? The 
answer is simple: there is no trivial way of doing this in a 
connectionist network without postulating some external 
"meta" system. Using integrator units is certainly one of the 
easiest solutions. Vickers (1979) claims that this 
implementation, which he calls parallel eventuation (see 
earlier) , needs to be adaptive in order to fit behavioral 
data. This is not the case here since adaptation is already 
implemented in the feed-forward network. Moreover, the 
results will show that this decoding device can generate 
latencies matching behavioral data.
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4.2.2. The winner-take-all network

The winner-take-all (WTA) network is a decoding device which 
involves feedback and within-layer inhibitory connections. 
Let 0 be the input vector fed to the winner-take-all net. Let 
V [t] be the state vector at time t in the decoding WTA net 
and let A be the connection matrix. Each unit is a simple 
non-linear unit such that

V(t+1) =trunc (AV(t))

where trunc is a non-linear squashing function such as

trunc(x) = l+e-x

which limits the activity of each unit to a bounded range,

The matrix A has the following structure:

A =

n8 -8 -5 . 

-8 n8 -8 . 

-8 -8 n5 .

. -8

. -8

. -8

L -8 -8 -8 -8 nS J

where the entry aij is the within-layer connection between 
unit i and j, while 8 is a small constant which controls the

gain and thus response speed of the network and n is the 
number of units in the network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

63

Starting with the state vector V[0]=O, the activity in the
network will evolve until very unit, except one, is at its
minimum level of activity (Koch & Ulmann, 1985); the time 
needed to complete this process is taken as the latency. In 
most implementations other constraints are built-in so that 
I IV| | = 1 and 0 < Vi < 1 for all i; this guaranties that the 

winning unit will be at its maximum level of activity when 
all other units will be at their minimum. The winning unit is 
the unit j for which Oj is maximum at time 0. Because of the 

within-layer inhibition, the latency will depend on the 
differences in activity across units. If the activity levels 
are similar, there wiLl be much competition and the latency 
will be longer. One extreme case is observed if the activity 
Vi is the same for all units; then the state vector will 

remain constant and tne response time will be infinite. The 
winner-take-all network is adequate to decode simple binary 
vectors where a non-zero value o F element j of the vector
represents stimulus j, and hence response j.

4.2.3. The Brain-State-in-a-Box network

The Brain-State-in-a-Box (BSB) matrix model was discussed in 
the review section. It is a non-linear matrix network for 
which the state vector V, at time t+l, is given by:

V (t+ 1) = trunc(AV(t))
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where A is the connection matrix and trunc is a squashing 
function that limits the activation of each unit to a bounded 
interval. The matrix A has a symmetric structure; here, A is 
a scalar multiple of the covariance matrix of the stimuli 
(see Section 2.3) and has the following structure:

“  cn C12 C13 • • cnn
C21 C22 C23 • • c2n

A = a C 31 C32 C33 • • c 3n

— Cni Cn2 cn3 • • cnn “

where cij is the weighted link between units i and j. The time 

needed to reach a corner of the box (each unit either at its 
maximum or minimum firing rate) is taken as the response 
time. This model has the advantage that it can be applied to 
any response vector regardless of the representation and can 
be used to decode complex feature vectors. These attributes 
are important for applications such as word recognition. The 
BSB might not be adequate to model latencies in simple 
psychophysics where a single element of the state vector 
represents a specific stimulus: first, the network might end­
up in a corner that does not correspond to a stimulus (e.g. 
01100..); second, since the representation vectors are 
orthogonal (or close to orthogonal) and since the weighted 
connections of A develop following a correlational rule, all 
(or at least most) of the entries off the main diagonal of A 
would be zeros.
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In summary, all three decision modules described here do 
parallel computation. The simplest one, made of integrator 
units with threshold detectors, is an implementation of a 
simple parallel eventuation model (Vickers, 1979). The 
process ends when one of the units reaches threshold. This 
system can also be interpreted as a linear distance 
classifier (Ashby & Gott, 1988) which performs decisions on 
independent (unidimensional) features. The winner-take-all 
net does parallel elimination (Vickers, 1979). The response 
is supplied once a single unit has reached its maximum level 
of activity with the decision provided depending on the 
interaction of several parallel processes. It is an integral 
dimension classifier (see Ashby & Gott, 1988) using a 
multidimensional classification rule; by integral classifier 
these authors mean a device that applies classification rules 
to the joint values of several dimensions (or features) in 
opposition to a device that applies classification rules 
independently on each dimensions. The brain-state-in-a-box 
performs sophisticated parallel elimination based on integral 
dimensions. Because the connection matrix can have any 
(symmetric) structure, the network can implement complex 
decision criteria. This characteristic is important when the 
response vector needed is a complex pattern of binary 
features such as in word recognition (see later).

In this connectionist implementation of absolute 
identification, the adequacy of the network of simple
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integrators and the winner-take-all-net to model latencies 
will be verified. The brain-state-in-a-box will be used later 
to model word recognition and naming. As mentioned 
previously, the connection matrix A of this last network is a 
scalar multiple of the covariance matrix of the stimuli. With 
simple independent (or near orthogonal) stimuli this matrix 
will have a diagonal (or near diagonal) structure and reduces 
to a network of simple integrators.

4.3. Stimulus representation assumptions

Connectionist networks are non-symbolic processing systems 
and contrast with the symbolic sequential rule-based 
approach. While in a rule-based system an arbitrary symbol 
can be assigned a specific (arbitrary) meaning, within the 
connectionist paradigm "similar” stimuli have "similar” 
representations. The "meaning" is not independent of the 
representation and the similitarity between two stimuli can 
be evaluated by some measure of correlation or distance 
between their respective representations.

To model a cognitive process, assumptions need to be made 
about the stimulus representation and the level of processing 
needs to be clearly specified. For example, in a word 
recognition model the input could be letter features, simple 
bit-mapped graphics or whole letters. The representation 
should carry the characteristics relevant to the specified 
level of processing (e.g. feature extraction, letter
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recognition, word recognition, semantics, etc.); if letter 
features are used, the similarity between the representations 
of any two letters should correspond to the perceptual 
similarity of these letters.

In the case of absolute identification, which involves a set 
of n stimulus/(correct) response pairs S1R1, S2R2, S3R3,.. ,,SnRn, 
the simplest representation that we could use is a set of n 
binary encoded n-dimensional orthogonal vectors, such as the 
ones used for the encoder problem, with each stimulus and 
response represented by a different vector with only one non­
zero component, i.e.

STIMULUS RESPONSE 
[1000...0] [1000 ...0]
[0100. . . 0 ] [0100. . . 0 ]
[0010...0] [0010...0]
[0001 . . . 0 ] [0001. . . 0 ]

• •
• •
• •

[0000...1] [0000...1].

But since the psychological representations of real stimuli 
(and responses) are not always mutually independent this 
representation might not be adequate. To make it more 
realistic from a psychological point of view, I will 
implement a Gaussian sensory trace. Several authors (e.g. 
Ashby & Gott, 1988; Ratcliff, 1978; Green & Swets, 1966; 
Vickers, 1979) propose that the presentation of a stimulus 
generates a sensorial (or psychological) trace, which for 
stimulus x follows a random variable X. In most of the 
literature, X has been assumed to have a (multidimensional)
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normal distribution, as it will be here. The idea is that a 
specific stimulus is not associated with an exact (sensorial) 
representation but rather with a probabilistic (Gaussian) 
representation.

Here, the pairwise discriminability among stimuli depends on 
the amount of overlapping of the (Gaussian) distributions. 
While adjacent stimuli have a higher probability of being 
confused, the amount of confusion decreases for stimuli 
further apart. The discriminability of any pair of stimuli 
can be characterized conveniently by a measure of signal 
detectability d' proposed by Green & Swets (1966), where

“ tc

with m  (respectively, H*) the mean of the Gaussian 
distribution associated with Si (respectively, S*) and C the 

standard deviation common to both distributions. Green & 
Swets (1966) proposed d' as a measure of distances (in 
standard deviation units) in the psychological space.

The value d' depends on the sensory characteristics as well 
as on the psychological representation. Since the trace 
associated with a stimulus is not observable, the 
psychological d1 cannot be directly calculated and is thus a 
quantity that might be theory dependent. Neverless, it is 
sometimes possible, through the experimental manipulation of 
the probability of presentation of the members of a stimulus
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set, to evaluate d' (see Baird and Noma, 1978, for a 
discussion).

In the connectionist model described here the sensory trace 
is assumed to be normally distributed and thus when a 
stimulus is presented neighboring units are also activated. 
The level of activation is proportional to the height of a 
Gaussian distribution and the total level of activation (sum 
across input units) is equal to one with the exception that 
distributions located at the end of the sensorial array are 
truncated. A schematic view of this representation is 
provided in Figure 4.12. Of course this is a fairly rough 
approximation of a Gaussian distribution (especially if C is

assumed small) but it is a simple way to reproduce the idea 
of a sensory trace.

In the simulations, the distance iM-i-M-i + il between two 

adjacent stimuli is constrained to be at least 1 and the 
minimum number of units (input and output) needed for a 
simulation is n (the set size) . This coding schema has 
limitations: while in the theory of signal detectability 
(TSD) a stimulus is associated with a (continuous) 
probabilistic distribution located on an evidence 
(continuous) axis varying across trials, the sensorial trace 
is here a discrete representation following the shape of a 
Gaussian distribution. In an attempt to make the 
representation more realistic, random noise is dynamically 
added to each stimulus representation on each trial. This is
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a commonly used procedure with connectionist implementations 
that facilitates generalization (LeCun, 1989) at the cost of 
slightly decreasing the networks performance. It also has the 
advantage of adding variability to the responses and allows 
the generation of response probabilities. A small pseudo­
random value is added to each element of the input vector. 
Each component of the random sequence follows a normal 
probability distribution with mean zero. The standard 
deviation of this distribution is adjusted such that the mean 
of the absolute value of the random numbers is 0.20. Since 
the maximum value for an element of the input vector is 1, 
this is said to correspond to 20 percent noise. This value 
was arbitrarily chosen and it will not be manipulated in 
order to improve the fit of the simulations to the behavioral 
data. Other models postulating sensorial Gaussian trace (e.g. 
Ashby & Gott, 1988; Ratcliff, 1978; Green & Swets, 1966; 
Vickers, 1979) do not assume this kind of additional random 
process since they have random sample from a normal 
distribution at each stimulus presentation - this sampling 
procedure is responsible for the variability in the input.

For some experimental tasks, such as absolute identification 
of pure tones (Pollack, 1953; Garner, 1953), the total range 
along which the stimuli are distributed plays an important 
role. In order to reproduce this phenomenon in the proposed 
connectionist model, the distance of two adjacent

stimuli must be manipulated and thus the sensorial d'
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(computed on the stimulus input vectors) should be allowed to 
vary. This can be implemented using a network with a large 
set of input and output units along which Gaussian 
distributions representing the stimuli are moved. 
Unfortunately, this involves large networks that take a long 
time to simulate and thus only a few simulations using this 
approach will be reported in this thesis; otherwise, in most 
of the other simulations the distance | Mi-M-i+i I is equal to 1.

To be an adequate representation the sensory trace must 
correspond to some d' inferred from the behavioral data and 
there should be a fixed mapping between the physical range of
the stimuli and the sensorial one. In most simulations
reported in this thesis, the total sensorial range increases 
as the set size n increases. Corresponding to the more 
frequently encountered absolute identification experimental 
set-up, the stimuli are thought of as lights on a panel, 
while the responses are thought of as buttons on a panel 
(Teichner & Krebs, 1974); thus the number of units needed to 
represent a stimulus set of size n is n. For those
simulations involving equally spaced stimuli, the d'
(computed from the stimulus representation) associated with 
any two adjacent stimuli is set equal to 0.75, which, since 
I 11 =1 > corresponds to a standard deviation, o, equal to

1.33. This is typical of values reported in several 
identification experiments (Tanner, Swets, & Green, 1956; 
Swets, 1959; Shipley, 1961; Green & Swets, 1966) .
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I now provide simulation results that illustrate the effect 
that implementation of a Gaussian sensory trace has on the 
learning curves and on the stimulus/response matrix. Since 
the target vectors used to train the network are viewed as 
feedback vectors from the environment, the sensorial trace 
assumption that holds for the primary input vectors might 
also hold for the feedback vectors. This is why I report 
results involving both Gaussian input and target vectors. 
Results involving Gaussian stimuli will be compared with 
results obtained with a binary (orthogonal) representation. 
Also, the effects of changing the standard deviation (and 
thus d') of the Gaussian distributions will be considered.

Simulations. To compare characteristics of the binary and 
the Gaussian representations I ran four classes of 
simulations according to the type of representations used for 
stimulus and target vectors. They are

Orthogonal stimuli / Orthogonal responses (00),
Orthogonal stimuli / Gaussian responses (OG) ,
Gaussian stimuli / Orthogonal responses (GO),
Gaussian stimuli / Gaussian responses (GG) .

Orthogonal stimuli (or responses) refers to binary non­
overlapping stimuli while Gaussian stimuli (or responses) 
follow (overlapping) normal distributions. Mean-variance 
back-propagation was used with learning rates a=0.45 and 
X=0.20 on a three layer net with 1 hidden unit. Figures 4.13 

and 4.14 present plots of the MSE as a function of learning 
trials for the identification task with 8 and 16 stimuli for
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each of the four class of simulations. A total of 10 000 
learning epochs were performed in each case, with each epoch 
consisting of one presentation of each stimulus. As can be 
seen the MSE curves are substantially similar in all four 
conditions except for a longer plateau at the beginning of 
the learning process for the OG and GG conditions.

Table 4.3 (for 4-, 8- and 16-stimulus sets) and Figure 4.15 
(for a 16-stimulus set) show for each of the four conditions 
the stimulus/response matrix computed over the last 500 
learning trials where the unit with highest level of 
activation is considered to be the response. Table 4.4 gives 
the amount of information transmitted for each condition. In 
the Gaussian conditions a d 1 of 0.75 was used. In these 
results the MSE computed with Gaussian and binary target 
vectors should not be directly compared since the tasks are 
quite different; in the binary case the target vector is, 
except for one unit, made of all zero values while, in the 
Gaussian case, the target vector is a smooth pattern of 
activations spread along several units. Inspection of the 
incidence matrix reveals, for the larger set size (n=16), 
differences in the structure. While the array observed in the 
OG and GG conditions present a nice smoothly decreasing 
diagonal structure, the two other incidence matrices show a 
more erratic structure with entries away from the main 
diagonal (Figure 4.15). It appears that for the larger set 
size the stimulus/response matrix does not keep its diagonal
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741 structure except when the feedback (target) vector is assumed 
to be Gaussian. Notice that increasing the noise level will 
also cause the stimulus/response array structure to 
deteriorate but should similarly affect all four conditions.

d 1 affect. It is expected that, for a fixed number of 
stimuli, as d' (from the stimulus representation) increases 
the amount of information transmitted will at first increase 
but will asymptote as d' increases further. I tested this 
hypothesis through two sets of simulations with set size 8. 
To test the effect of changing d' the standard deviation of 
the Gaussian distributions was modified (keeping the distance 
I jj-i— JXi-11 equal to one) . In principle d 1 could also be 
modified by changing the distance |M-i-M-i+11 anc* increasing the

total range (and the total number of units) . While both 
procedures lead to equivalent d', keeping lM-i-Hi+il fixed is

computationaly simpler and (a lot) more economical. Notice 
that it is not clear whether both procedures are 
theoretically equivalent — in this connectionist 
implementation, modifying mi-|ii+il affects the total number

of input units involved in representing the stimulus set, and 
as the number of units used is increased the number of 
connections is increased and presumably so is the ability of 
the network to learn the task.

In one case I manipulated the d' of the input vector, whereas 
in the second case I manipulated the d' of the target vector. 
Figure 4.16a and 4.16b respectively present plots of the
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amount of information transmitted as a function of d' for the 
OG (Orthogonal stimuli / Gaussian responses) and GO (Gaussian 
stimuli / Orthogonal responses) conditions. It can be seen 
that the amount of information transmitted quickly increases 
and asymptotes as d' (for adjacent stimuli) increases.

Conclusion. The simulations reported here first demonstrated 
that adding a Gaussian filter on the input vector and/or the 
target vector does not substantially alter the learning 
curves observed in a simple absolute identification 
implementation. However, such filtering changes the structure 
of the stimulus/response matrix: the stimulus/response
matrices observed with Gaussian feedback (target) vectors 
present a smoothly deteriorating main diagonal structure, 
which is not the case for large set sizes involving 
orthogonal feedback (target) vectors.

The results also demonstrate that adding the Gaussian 
structure on either the input or output representation 
decreases the amount of information transmitted (Table 4.4). 
Finally, the amount of overlap of the adjacent Gaussian 
distributions substantially alters the amount of information 
transmitted (T) with T increasing and reaching an asymptote 
as d' increases (Figure 4.16).
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4.4. Simulation results for unidimensional stimuli

Now that we have considered the three sets of assumptions 
involved in building our connectionist model it is time to 
combine them — i.e. to combine the new MV-BP learning 
algorithm with the hybrid architecture using a feed-forward 
net and a decoding module, and with the Gaussian sensory 
trace. These three topics were previously discussed 
separately in order to isolate their respective 
characteristics, so I now briefly review the three sets of 
assumptions.

Learning algorithm. The mean-variance back-propagation 
learning algorithm minimizes a weighted mixture of both the 
mean-square error and the variance of the square error. The 
learning rates used for all simulations are a=0.45 and X=.20.

In all simulations 10000 epochs were performed, with each 
epoch consisting of the presentation of each element of the 
stimulus set in random order — this is equivalent to 10000*n 
random trials. A large number of trials was performed in
order to obtain asymptotic results on which I will focus.

Stimulus representation. Both input (stimulus) and 
response (target) vectors are binary vectors filtered using a 
Gaussian filter. The mean of each stimulus (response) is 
associated with a single input (output) unit and the 

^ representation is in that sense binary (one unit for each
■* stimulus) . Except when stated otherwise, the number of input
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i (and output) units used for each simulation equals the set 
size with the difference in the means associated with any two 
adjacent stimuli being equal to 1 anc. with the detectability 
d' equal to 0.75 - i.e. the standard deviation of the
Gaussian distributions is 1.33. In all simulations 20% noise 
was added to the input vector; as mentioned earlier this is a 
common (connectionist) procedure that makes processing non- 
deterministic and allows variability of performance.

Network architecture. The hybrid architecture consists of 
a feed-forward network and a decoding module. As discussed 
earlier, two types of decision modules adequate for binary 
encoded responses are used: a network of simple integrators 
with threshold and a winner-take-all network. Results 
obtained with both modules will be compared.

4.4.1. Main results

The simulation results are organised around the behavioral 
phenomena mentioned in Chapter 3. Two model parameters are 
considered: the number of hidden units used and the d'
associated with two adjacent stimuli. Unless stated otherwise 
one hidden unit and d 1 of 0.75 are used.

Learning. Figures 4.17 to 4.19 present che log-log plot of 
the MSE and the latencies provided by the two different 
decoding modules: the integrators with threshold (IWT) net 

j  and winner-take-all (WTA) net. Results are reported as a
function of the number of learning trials for set size 4, 8,
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16 and 32 (and associated total ranges 4, 8, 16 and 32 units 
— see previous comments regarding relation between set size 
and range in these simulations) with 1,2, 3 and 4 hidden
units. As usual, the learning trials were divided into epochs 
with each epoch involving one presentation of each member of 
the stimulus set. It can be seen on these graphs that most 
curves have the expected linear (on a log-log plot) shape 
with steepest slopes for smaller set sizes and a larger 
number of hidden units; the curves appear a lot more 
compressed for the network with one hidden unit but still 
present the linear relation. The data provided by the WTA
network are different and appear much more chaotic. The
relations reported in these figures are probably closer to 
linear than those observed for the encoder problem results 
reported in Section 2.4.

Set size effect. The previous figures reporting changes 
through learning highlight differences between simulations 
with various set sizes (and corresponding ranges). 
Furthermore, Figures 4.20 to 4.24 present graphs of the 
asymptotic MSE, probability of error (PE), latencies (IWT and 
WTA) and the amount of information transmitted (IT) computed
after 10 000 epochs for various set sizes (and corresponding
ranges) and number of hidden units. These results are based 
on single presentations of each stimulus. The graphs reported 
here show the change in performance as the set size 
increases, and in most cases an asymptote is observed. The
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MSE, PE and the IWT latencies show the characteristic 
asymptotic curves that are obtain with real (behavioral) 
data, but the WTA latencies do not exhibit the same 
characteristics. Network simulations done with one hidden 
unit seem to provide curves which closely fit behavioral data 
- for instance Figure 4.25 has asymptotic IWT latencies 
superimposed over Merkel's (1885) data. The fact that one 
hidden unit leads to a good fit is perhaps not surprising 
since the stimuli and responses vary along a unidimensional 
continuum.

The asymptotic curves of the information transmitted 
(Figure 4.24) observed for networks with 3 or 4 hidden units 
show a slight decline for large set size (n=32) and although 
scant behavioral data exist for such large sets, Luce (1986) 
reports identification experiments for which this decline in 
information transmitted is observed. However, various data 
are actually best fit by the simulations with one hidden 
unit, so this decline with 3 or 4 hidden units is perhaps 
irrelevant.

Effect of changes in d'. Figure 4.26 presents curves of 
the amount of information transmitted as a function of the 
set size for various d' (0.33, 0.66, 0.75) values with 1
hidden unit. The simulation stimulus sets used here are 
equivalent to "lights" arranged on a panel where the total 
range increases as n increases. One hidden unit was chosen 
since the amount of information transmitted for the 2 hidden
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fl units simulations is well over what is observed in the 
behavioral data. Modifying the d' parameter is like changing 
the resolution of the sensorial input. The smaller is d', the 
larger is the amount of overlapping between adjacent stimuli, 
and the higher the probability of confusion. The simulation 
results present a somehow chaotic structure - this is 
(probably) because each simulation data point is a single 
realization and, as explained earlier, the time needed to run 
each simulation makes it impossible to replicate all the 
simulations several times. Nonetheless, as it is seen in 
Figure 4.26, the simulation data is sensitive to both set 
size and d effects. In particular, the information 
transmitted asymptotes as the set size and associated range 
increases.

Range Effect. The total range along which the stimuli are 
distributed (for a fixed d' between adjacent stimuli) plays 
an important role in some behavioral experiments such as 
absolute identification of pure tones of varying intensities. 
Smaller ranges are associated with higher degrees of 
confusion and smaller amounts of information transmitted, but 
increasing the range has little or no effect beyond a certain 
point. Figure 4.27 adapted from Braida & Durlach (1972) 
presents the amount of information transmitted in a 10- 
stimulus set pure tone identification experiment as a 
function of the total range. Marley & Cook (1984) 
demonstrated that their anchor model can fit these behavioral
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data. This model, like the implementation presented here, 
postulates a Gaussian sensory trace which, for the Braida & 
Durlach data, is estimated (taking into account the scale 
difference between their implementation and the one reported 
here) to have a standard deviation roughly equal to 1.

In an attempt to replicate this data with my connectionist 
implementation I performed a series of five simulations each 
involving a 10-stimulus set. Each stimulus has the Gaussian 
structure previously discussed with a standard deviation 
equal to 1. In each of the five conditions the distance 
I Jj-i-Jii +11 between any two adjacent (input) stimuli is 
different ranging from lm~Hi + il=l to lHi-^i+il=5. In all 
conditions the same set of target vectors (with | M-i— (J-i+i I = 1 

and d'=l) is used. Figure 4.28 presents the results of the 
simulations. As can be seen, the total amount of information 
transmitted for the simulation results agrees very well with 
the behavioral data. Since in my connectionist implementation 
a 10-stimulus set requires at least 10 units, it was not 
possible to run simulations for ranges smaller than 10, which 
is why no simulation points are provided on Figure 4.28 for 
ranges smaller than 10 units.

Conclusion for main results. From these results we 
conclude that the simulation model replicates the major 
features of some important behavioral data on absolute 
identification. The architecture, learning algorithm, and 
stimulus representation allow the replication of (1) the
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power law of learning for latencies, (2) the set size effect 
on latency, and (3) the characteristic curve relating 
information transmitted to stimulus range. The results appear 
to be especially adequate using one hidden unit and 
integrators with thresholds in the decision module. In the 
following paragraphs I provide additional results, continuing 
to use a feed-forward network with one hidden unit and a IWT 
decision module.
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4.4.2. Additional results

End Anchor effect. The effect is basically not present in 
the simulated data. Figure 4.29 shows line plots of the 
probability correct (although most researchers use d ’ to 
document this phenomenon) observed for set sizes 4, 8 and 16 
with one hidden unit and d'=0.75. The x-coordinate on the 
graph is the position of the stimulus along the sensorial 
input range. The end anchor effect is observed only for the 
8-stimulus set. Notice that contrary to other modeling 
approaches to absolute identification, such as Marley &' 
Cook's (1984) or Vickers' (1979) models, no assumption was 
made in this connect ionist implementation that would 
"naturally" replicate this effect.

Relation between latencies and MSE. Could MSE be a good 
predictor of the decision time provided by the decoding 
module connected at the output of the feed-forward network? 
This, as mentioned earlier, is an important question for 
anyone interested in connectionist models of latency. Figure 
4.30 and 4.31 show, for various set sizes, correlation plots 
between MSE (x axis) and IWT latencies (y axis) computed over 
the last 100 learning epochs for simulations with 1 and 2 
hidden units. Each plot has 100*n data points, each point on 
each graph representing an individual MSE and decoding time. 
The relation is in all cases strongly linear and leads to the 
conclusion that the MSE is overall highly correlated with the
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decoding time provide by the WTA net. Notice that the (IWT) 
decoding time depends on the (single) activation of the 
output unit with the highest level of activation, while the 
mean-square error jointly depends on the activation of all 
the output units; thus the decoding time and the MSE do not 
necessarily have to be highly correlated.

Latency distributions. Latency distributions observed in 
absolute identification tend to follow a log-normal 
probability distribution (Ratcliff, 1978). One of the main 
contributions of Ratcliff's memory retrieval model is to fit 
these distributions. Although no specific attempt was made in 
the simulations to reproduce this result, the simulated model 
provides the expected distributions. Figure 4.32 and 4.33 
present the latency distributions obtained for stimulus set 
sizes from 4 to 32. The distributions are from the results of 
the last 100 learning epochs and represent the response times 
computed over the stimulus set. Figure 4.34 and 4.35 show the 
QQ-probability plot based on the rank order of the data 
(x-axis: theoretical log-normal probability; y-axis: observed 
frequency) for the distributions with 1 and 2 hidden units. 
It can be seen that the overall fit is very good except for 
larger set sizes. On these plots deviations from a 45 degree 
straight lines indicate deviations from the theoretical 
distribution. The higher slopes for larger set sizes indicate 
observed distributions with limited ranges. From these 
results we can conclude that, for the set sizes usually
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( studied (n < 10) , the distributions of simulation latencies 
follow the log-normal distributions observed in the 
behavioral data.

Correct versus incorrect responses. The data from
absolute identification experiments usually show observed 
(mean) latencies differing for correct and incorrect
responses. Overall, incorrect responses usually take longer 
to provide than do correct ones (Hick, 1952; Hale, 1969; 
Stanovich, Pachella, & Smith, 1977) unless the subjects are 
specifically instructed to respond as fast as possible (Hale, 
1969; Stanovich, Pachella, & Smith, 1977). Figure 4.36 and
4.37 presents respectively bar graphs of mean-square errors

§§rm  and mean latencies (IWT) observed for various set sizes
W computed over the last 1000 learning epochs; in all cases the 

mean response time is smaller for the correct responses.

When subjects are instructed to respond faster, or when the 
experimental set-up forces them to do so, the increase in 
speed is usually inversely proportional to the decrease in 
the information transmitted (Hick, 1952; Hale, 1969); i.e. 
the plot of mean response time against the amount of
information transmitted is linear. In the simulations 
reported here no attempt was made to replicate this
experimental manipulation, although a possible implementation 
might be achieved through systematic manipulation of the 
thresholds of the decoding module.
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Compatibility effect. As discussed earlier in the thesis, 
mental compatibility is an important variable when studying 
absolute identification. The stimulus/response representation 
used in the simulations reported earlier assumed perfect 
compatibility with both the stimuli and responses being 
"simple". But what if, as in Theios' (1975) experiment, the
input vector is made "complex" and the output vector either 
"simple" (incompatible) or "complex" (compatible)? As 
previously discussed, m  the complex stimulus / complex 
response case, the behavioral data do not show the usual 
increasing relation between set size and response time (see 
Figure 3.2).

I ran simulations where the type of input and output
representations (simple or complex) were manipulated yielding
four possible conditions, i.e.
Simple Stimuli / Simple Responses (Compatible)
Simple Stimuli / Complex Responses (Incompatible)
Complex Stimuli / Simple Responses (Incompatible)
Complex Stimuli / Complex Responses (Compatible).

The simple stimulus and response representations were the 
previously discussed Gaussian unidimensional representation 
and arc thought of as arrays of "lights" (stimuli) and of 
"keys" (responses), while the complex representation is 
either based on an orthographic (word stimulus) or phonemic 
(naming response) representation.

The complex representations use features and involve a 
position specific (slot' encoding scheme where n slots are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

87

<4*. required to represent n letters (phonemes) . Each letter used
in the input vector is encoded using Gibson's (1969) features 
representation while phonemes used to encode complex 
responses are represented using features proposed by 
Rumelhart & McClelland (1986). A total of 11 features are 
used to represent each phoneme while 28 features are used for 
each letter.

The (visual) words "one" to "ten" are represented by up to 5 
letters (140 features) while the (spoken) words "one" to 
"ten" are represented by up to 7 phonemes (77 features)3. If 
the representation needed is shorter than the maximum, a 
blank code (all features off) is used to complete the string. 
These complex representations are the same used in my work on 
word recognition presented in Chapter 5.

Obviously, with the complex response vectors (phonemic), a 
simple IWT decision module is inadequate, so in that case I 
use a BSB network. The BSB network was trained on the 
phonemic regularities of more than 2000 English words over a 
total of 500 epochs. Within each epoch 200 phonemic vectors 
were presented, each one picked randomly without replacement 
and with probability proportional to the relative frequency 
of the word as reported by Kucera & Francis (1967). This 
procedure is described in more detail in Chapter 5. The

3in most experiments digits are used not words.
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decoding module was trained independently of the feed-forward 
network using the correlational learning rule for matrix 
model described in Section 2.2 of the thesis.

For all simulations the feed-forward net was trained for a 
total of 10 000 learning epochs. For set size 2 {"one",
"two"} is used while {"one", "two", "three"} is the 3- 
stimulus set and so on. The feed-forward network was trained 
independently for each stimulus set while the same decoding 
module, trained on the overall English phonemic regularities, 
is used in all cases. I assume this to be equivalent to real 
conditions where human subjects have access to already 
learned phonemy but learn specific mappings depending on the 
task requirements. When the response is complex, the decoding 
time supplied by the BSB network is taken as response 
latency, while for the simple responses an IWT net is used. 
Figure 4.38 and 4.39 report the asymptotic mean-square error 
and mean reaction time as a function of the set size for the 
four conditions. As can be seen, the complex stimuli / 
complex responses condition presents a flatter MSE curve and 
essentially constant latency as the set size increases. When 
compared with Figure 3.2, it appears that the latency results 
provided here follow quite consistently the behavioral data 
except for the simple/complex condition which (in the 
behavioral light-voice condition) is associated with the 
largest latencies.

1
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Laming (1968) and Luce (1986) suggest that the flatter 
relation observed for the digit/voice condition can be 
explained by the fact that the stimuli (digits) are so 
overlearned that, despite a subset of the digits being used, 
the subjects continue to behave as if there were 10 stimuli. 
Since the latencies in the digit-key condition increase with 
set size, the controlling factor must be the response aspect, 
not the decision (or identification) one. This is supported 
by the previously discussed experimental results from Theios 
(1975) presented in Figure 3.3.

The same explanations could certainly be used to account for 
the simulation results; when complex output is required the 
BSB network which was trained extensively on English phonemic 

regularities is used and despite an increase in mean-square 
error as set size increases, the time needed to provide the 
phonemic feature vector for the words {"one", "two", ..., 
"ten"} remains constant independently of set size. The 
observed latency curve for the simple/complex condition is 
harder to explain; the increase in latency as set size 
increases is small (although larger than in the complex- 
complex case). The extensively learned phonemic regularities 
can probably explain the small magnitude of this increase 
while the effect itself could be attributed to the more 
complicated mapping (shown by larger MSE). This agrees with 
the behavioral data for which the light-voice condition is 
associated with the largest latencies, indicating a more
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complicated mapping, although, in the simulated experiment, 
the simple/complex condition is not associated with the 
largest latencies.

Obviously, the results presented here cannot account fully 
for the behavioral data, but it appears that the model is 
sensitive to the complexity and compatibility factors.

4.5. Extension to multidimensional stimuli

The simulated model presented in the previous section could 
fit many behavioral phenomena concerning unidimensional 
absolute identification. The results reported in this section 
suggest that the proposed approach can also be used to model 
absolute identification of separable multidimensional 
stimuli.

Most data gathered on the identification of multidimensional 
stimuli concern the structure of the stimulus/response 
matrix. The biased choice model for identification 
axiomatized by Luce et al. (1963), following a first
formulation by Shepard (1957), leads to an impressive fit of 
such behavioral data (e.g. Townsend, 1971, Smith, 1980; 
Townsend & Ashby, 1982; Townsend & Landon, 1982, Nosofsky, 
1985) . According to this model the probability that a subject 
makes response j given stimulus k, P (Rj I SjJ, is given by
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911 where 0 ^ Pj, flkj — if = i* l̂kj =* l̂jkf and Tjkk = 1, The Pj
i-i

parameters are interpreted as response biases while the r|kj 

parameters are interpreted as the similarity between the 
stimuli Sk and Sj. The number of parameters involved in this 

model is large: there are n-1 freely varying response bias 
parameters and n(n-l)/2 freely varying stimulus similarity 
parameters.

Nosofsky (1985, 1986, 1987) uses a multidimensional scaling 
(MDS) approach to replace the stimulus similarity parameters 
by a smaller set of coordinate parameters. The Tikj are then

seen as a function of the distance in the psychological 

space, i.e.

Tlkj = f (dkj),

where dkj is usually taken to be the Euclidean distance 

between stimulus k and stimulus j. Nosofsky showed that the 
best fit of this combined MDS-choice model is achieved with 
Euclidean distances and a Gaussian similarity function, that 
is with

T,kj -  e ' ^ 2

This new parsimonious model gives very good fit to the 
relevant data. For instance, Nosofsky (1985) presents 
experimental data on a set of bi-dimensional stimuli and
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provides comparison between the MDS-choice model and Luce's 
biased choice model demonstrating that his approach also 
provides very good fit to his data. I propose a connectionist 
implementation of the same task and will compare the MDS- 
choice solution and the internal representation developed by 
the network. As I will demonstrate, the connectionist 
implementation provides a stimulus/response matrix similar to 
that obtained from a person. The connectionist network also 
develops a representation that closely matches the 
psychological representation inferred from the MDS-choice 
model.

The task I implemented is analogous to the identification 
task described by Nosofsky (1985). In this experiment, 
subjects were presented with one of 16 stimuli. The stimuli 
varied along two independent dimensions: size (four levels) 
and angle of orientation (four levels). For both dimensions 
the progression from one level to the next is linear in the 
physical scale. The values (4X4) were combined orthogonally 
to yield 16 stimuli. The subjects were instructed to press 
one out of 16 buttons arranged in a 4X4 panel. This button 
arrangement was compatible (in the obvious sense) with the 
stimulus arrangement and each stimulus is associated with a 
single button. Feedback was given after each presentation. 

Since the structure of the stimulus/response matrix is the 
dependent variable and since little data exist on the latency 
of absolute identification of multidimensional stimuli, the
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implementation described here does not incorporate a decoding 
module and no attempt is made to predict response times.

Stimulus representation. Nosofsky's task involved two
separable dimensions. The network implementation is also
based on separable dimensions. A set of 16 input units is
used. Each unit corresponds to one of the possible inputs.
The units are assumed to be arranged in a 4X4 array — i.e.
the stimuli have the following arrangement:

a b e d  
e f g h 
i j k 1 
m n o p

Following the general approach used for the unidimensional 
case, the sensory trace is assumed to follow a 2-dimensional 
normal distribution; also, on each dimension the 
detectability, d 1, between any 2 adjacent stimuli is set 
equal to 0.75. Sections of the Gaussian representation that 
do not fall within the 4X4 array are truncated. The target 
vector is also assumed to be 2-dimensional normal and has the 
same structure as the input vector. Figure 4.40 shows the 16 
bi-dimensional normal stimuli.

Network architecture. The network implementation used a 
feed-forward network with either one or two hidden units.

Learning. The mean-variance back-propagation algorithm 
previously described is used. A total of 10 000 learning
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C  epochs were performed, where, as usual, each epoch consists
of one presentation of each member of the stimulus set. 
Twenty percent noise was added to the input vector.

Results. Figure 4.41 shows the learning curves plotted on a 
log-log graph and demonstrates the expected linear curve for 
MSE versus learning trial for the simulations with one and 
two hidden units. As expected, the results obtained with the 
2-hidden units network present a much steeper slope. 
Table 4.5 (respectively, Table 4.6) presents the 
stimulus/response frequencies computed over 500 trials after 
the learning phases for 1 (respectively, 2 ) hidden units, 
while Table 4.7 adapted from Nosofsky (1985) shows the same 
stimulus/response matrix produced by a human for the 
2-dimensional identification task. As can be seen the 2 
hidden units simulation and the real data matrices present a 
similar structure with performances appearing slightly better 
in the simulated results. But remember, the 20% noise added 
in the simulation was quite "arbitrary", and not selected to 
give the best fit to the real data. Clearly the 1 hidden unit 
solution is not adequate - as can be seen the matrix presents 
several null (all zeros) columns, thus some responses are 
never produced by the network while other responses are 
produced with high probability. It seems that the network is 
unable to learn correctly the mapping for the 16 stimuli and 
ignores some responses.

C
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Following the approach described in Luce, Bush & Galanter 
(1963), I estimated the values of the bias parameters and 
fitted the choice model to the 2 hidden-units simulation 
results presented in Table 4.6. The fit is plotted in Figure 
4.42 while Figure 4.43, adapted from Nosofsky (1985), 
presents the fit of Luce's model to the behavioral data of 
Table 4.7 — the x axis represents the expected frequency 
while the y axis is the observed one. As can be seen both 
fits are very good.

Using the simulated stimulus/response matrix and following 
the approach described by Nosofsky (1985) with his 
assumptions about the similarity/distance function (Gaussian) 
and distance computation (Euclidean), I computed a MDS 
solution based on Torgeson's (1958) classical approach (Splus 
statistical software — Becker, Chambers & Wilks, 1988). I 
obtained a configuration (Figure 4.44) very similar to the 
one reported by Nosofsky (Figure 4.45, adapted from Nosofsky, 
1985). Figure 4.46 presents the one dimensional (1 hidden 
unit) internal representation developed by the network while 
Figure 4.47 gives the two dimensional (2 hidden units) 
internal representation both before (left figure) and after 
(right figure) removing the non-linearity - the non-linearity 
is removed by applying the inverse of the squashing function 
to the internal representation. As can be seen, the one 
hidden unit internal representation does not allow good 
discrimination among stimuli while the 2 dimensional (2
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hidden units) internal representation built by the network is 
very regular and allows good discrimination. This internal 
representation (Figure 4.44), like a MDS configuration, is 
invariant under rotation and appears (except for rotation) 
very close to the configuration provided by tne MDS-choice 
model for the real data (Figure 4.45) as reported by Nosofsky 
(1985) . Moreover, the one dimensional solution reveals the 
source of the null columns observed in the one dimensional 
stimulus/response matrix - several stimuli (e.g. m, j,g,d) are 
represented in a very similar way and thus will lead to the 
same response. Note also that with one hidden unit the 
network learned to represent the stimuli following one of the 
two relevant (physical) dimensions — namely, the vertical 
dimension in table on page 92, giving no confusion within the 
stimulus subsets {a,b,c,d}, {e,f,g,h}, {i,j,k,l,} or
{m,n, o, p} . .

Conclusion. The results reported in this section demonstrate 
that the proposed connectionist model for absolute 
identification can be successfully extended to bi-dimensional 
stimulus sets using a network with 2 hidden units. It is 
reasonable to believe that these results could be extended to 
n-dimensional stimulus sets with n hidden units. The number 
of hidden units involved is very important; as demonstrated 
here, if the network does not have the relevant number of 
hidden units it cannot learn the task while, as demonstrated 
previously with the unidimensional case, if the number of
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hidden units is too large the performance of the network is 
too good to be a realistic model. Finally, the performance 
observed in the simulation demonstrates a striking 
resemblance to Nosofsky's (1985) behavioral data and can be 
modeled using Luce's biased choice model. Moreover, the 
internal representation developed by the network is extremely 
similar to the ones inferred from the MDS analysis of the 
stimulus/response matrix gathered from simulation and 
behavioral observation.
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C  CHAPTER 5
COMPLEX IDENTIFICATION:

A MODEL OF WORD RECOGNITION AND NAMING

The previously proposed model was applied to simple absolute 
identification, with the results showing that it could fit 
several phenomena for uni- and oi-dimensional stimuli. An 
important question to ask is how connectionist models can be 
used to model identification of stimuli of greater
complexity. This chapter presents such a model of word 
recognition and naming; Lacouture, 1988, gives the results 
in a condensed form.

The proposed connectionist model of word recognition and 
naming is based on a hybrid architecture similar to the one 
used in the previous sections, in which a layer of processing 
units (a decision module) maps, in real time, the noisy
output from a feed-forward network onto a binary valued 
(multidimensional) response vector.

5.1. Historical summary and tha behavioral phenomena

Many studies have explored the effects of orthographic 
redundancy, orthographic-phonological regularity, and 
relative frequency of words on recognition latencies (see 
Seidenberg, 1985, for a review). In this Chapter I will be 
concerned with word regularity and word frequency effects on 
naming latency. Regular words contain a spelling pattern,
common to a large pool of words, which always has the same

£
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i pronunciation (e.g. "MUST" is regular like "RUST" or "DUST").
Exception words, in contrast, have a spelling pattern not 
pronounced according to the spelling-sound rules of English 
(e.g. "HAVE" is irregular in opposition to "PAVE" or "DAVE") . 
The large set of studies examining the processing of regular 
and irregular words in conjunction with their relative 
frequencies provide some well established results. I will be 
concerned with two central phenomenon. First, there are 
frequency effects', higher frequency words are named faster 
than lower frequency words (Waters & Seidenberg, 1985). 
Second, there is the regularity effect: longer latencies for 
exception words are specific to lower frequency words 
(Seidenberg et al., 1984; Seidenberg, 1905; Waters and 
Seidenberg, 1985).

The early attempts to model latency in the word 
identification and naming paradigm postulated the use of 
pronunciation rules to map orthography to phonemy (see 
Venezky, 1970; Wijk, 1966, Henna, Hanna, Hodges and Rudorf, 
1966). This view was influenced by the very popular 
information processing approach advocated by Newell and Simon 
(1963). According to the rule-based approach, a set of rules 
is applied to the orthographic representation to derive the 
corresponding pronunciation. Complex mappings require more 
processing and thus lead to longer response latencies.

The difficulty in establishing an exhaustive set of 
pronunciation rules, and the fact that a large body of words
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are not pronounced following the known rules, seriously 
challenged this approach. Coltheart (1978) proposed an 
extension of the rule-based approach whereby two competitive 
processes are involved, one being a rule-based mechanism, the 
other an exception look-up process. This new view, called the 
dual-route model, is able to explain the processing of 
exception words which do not follow the pronunciation rules. 
The look-up mechanism is slower so that most of the time the 
response is provided by the rule-based system. If the rule 
mechanism does not lead to a phonemic interpretation or if 
the response involves very extensive computation, then the 
look-up system wins the race and provides the response.

In a controversial paper, Glusko (1979) challenged the dual 
route model. He demonstrated that pronunciation is influenced 
by the knowledge of similarly spelt words and that latencies 
can be explained by a single mechanism. He developed the idea 
of pronunciation consistency which is defined in terms of 
between word support and competition. The proposed activation 
synthesis model replaced rule-based decisions by a process 
involving a set of between word connections or associations. 
Regular consistent words get support from similarly 
pronounced words while inconsistent words are opposed to many 
similarly spelled words with a different pronunciation. 
Glusko's model is part of the "associationist” Zeitgeist that 
is well illustrated by Ratcliff's (1978) work.

3
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Although studied further by other authors (e.g. Marcel, 1980; 
I Kay & Marcel 1981) the consistency effect proved to be
'k

I difficult to delineate and was only clearly demonstrated
recently by Jarea, McRae and Seidenberg (1990) .

f
■t£ 5.2. Connectionist models of word recognition
|I! NetTalk. Sejnowski and Rosenberg (1987) supplied the first
| implementation of a naming task in a connectionist network.
| Their network, NetTalk, is a feed-forward net which produces
!| the phonetic representation associated with the orthographic
I representation of a letter according to context (the
i immediately adjacent letters). The network has an input
*
I windowing system. The letters of the word to be pronounced
I are scrolled such that three letters are fed into the network

at a time — the one to be pronounced, the preceding one 
(previous context) and the following one (following context). 
Blank codes are used to mark the beginning and the end of a 
word. The letters are encoded in a simple binary fashion. 
There is a unit for each possible letter plus one for the 
blank code. Each input vector is made of 3*29=87 units, and 
each output vector is made of 33 (binary) units and allows 
the representation of 32 phonemes and a blank code. Learning 
is through back-propagation.

Although limited, this implementation proved that a 
connectionist model could be used to learn the mapping from 
orthography to phonemy. NetTalk could adequately map
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orthography to phonemy for regular and irregular words. 
Moreover, the output level provided by the network for each 
phoneme proved to be roughly proportional to the probability 
of confusion (from behavioral data) among phonemes given a 
specific letter in a specific context.

Seidenberg and McClelland's model. At the same time that 
I was implementing the model reported here, Seidenberg and 
McClelland (198 9) developed a similar model. Although both 
models use a feed-forward network and the back-propagation 
learning algorithm they are distinct in several respects. 
First, the implementations use completely different stimulus 
representations. Seidenberg & McClelland specifically encoded 
the context of graphemes and phonemes using the 

"wickelphones" and "wickelgraphs" representations. 
Wickelgraphs were proposed by Rumelhart & McClelland (1986), 
while wickelphones, proposed by Seidenberg & McClelland, are 
their phonemic equivalent. The wickel approach allows the 
representation of several letters (or phonemes) and their 
respective context at the same time using one representation 
vector. By contrast, I used a simple left-justified position 
specific encoding scheme with a blank filler which does not 
provided any built-in context information. Thus, in my 
implementation, the network must itself extract the graphical 
and phonemic regularities. Second, while Seidenberg's model 
was trained on monosyllabic words, the lexicon that I used 
consist of over 2000 mono- and multi-syllabic English words
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of from one to seven letters. Third, while Seidenberg used 
the mean-square error measure to predict naming latencies, 
the implementation that I proposed uses a decoding module to 
map, in real time, the noisy output from the feed-forward 
network to the response.

The final difference has to do with the size and scope of the 
model. The implementation built by Seidenberg and McClelland 
used a network of 1000 units (it runs on a CRAY-class 
computer) while the model that I proposed used less than 500 
units (it runs on a SUN 3-80 computer). My goal was to study 
possible implementations of large scale identification tasks 
in a connectionist architecture, whereas the Seidenberg and 
McClelland model was extended and used to fit a set of 
phenomenon beyond the scope of the model that I present here. 
Nevertheless, despite the differences in implementation both 
models led to some remarkably similar results.

5.3. Architectural assumptions

The model that I propose uses a modified three layer feed­
forward network (see Figure 5.1). An input layer of units 
codes orthographic information. This layer is connected to a 
layer of hidden units which output to a third layer used to 
code phonemic information. The units in the output layer are 
connected in a one-to-one fashion with an added layer of 
completely interconnected units. These interconnections 
include feedback connections and allow each of these units to
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^  reach, with a variable number of iterations, either their
maximum or minimum firing rate. This interconnected layer is 
equivalent to a Brain-State-in-a-Box (BSB) model (Anderson et 
al., 1977; Anderson, 1982; see Section 2.3). The BSB model 
takes as input a noisy stimulus (here the output from the 
feed-forward network) and maps it into a more probable state 
where all units are close to their maximum or minimum firing 
rate. Two factors control the latency of this process: first, 
the amount of noise in the input and second, which features 
are in error. Because the BSB has within layer connections 
which provide between feature support, the same amount of 
error on different units can lead to different reaction 
times. For instance, two output patterns Pa and Pb from the 
feed-forward network each with associated square error Ea = 
Eb, when fed into the BSB can lead to different response times 

if one of the patterns is closer to some of the distinctive 
features (the eigenvectors of the connection matrix; see 
Section 1.2) than is the other.

5.4. Stimulus representation assumptions

The model was trained on 2106 words (see Appendix 3). These 
words, chosen from Kucera and Francis (1967), include all 
uninflected English words up to seven letters in length with 
a relative frequency greater than 32. Conjugated verbs and 
compound expressions were excluded. Also, approximatively 500 
low frequency words were included to complete the lexicon.

f These words were represented using a position specific (or
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"slots") encoding schema. The orthographic code was derived 
from Gibson's (1969) features representation, with a total of 
28 features used for each letter. Since the stimuli are up to 
7 letters long, a total of 112 units is needed. To encode 
words shorter than seven letters blank codes (all features 
off) are used. The phonemic code is derived from Rumelhart 
and McClelland's (1986) phoneme classification with the 
features used corresponding to the place of articulation, 
voice or voiceless characteristic of the phoneme, etc. 
Following this schema 11 features are used to encode each 
phoneme. The phonemic code is also position specific. Up to 
77 units are used to encode the phonemic information.

5.5. Learning assumptions

Learning occurs through a series of epochs. Each epoch 
consists of the presentation of 400 words. A single word can 
only be seen once in the same epoch. Words are selected with 
a probability proportional to their relative frequency, 

without replacement.

Training involves two independent processes. First, the 
connections within the decoding module are learned using the 
delta rule following the general method described by Golden 
(1985, 1986). A noisy normalized phonemic stimulus is
presented, the system is allowed to settle (up to 10 
iterations are executed), and correlational learning (see 
Section 2.2) is applied on the resulting state and weights

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

106

are updated. For this learning procedure the learning rate 
was fixed and equal to 0.01. A total of 100 epochs were run.

The second learning phase is based on the back-propagation 
learning algorithm (Rumelhart et al., 1986). This procedure 
concerns the three feed-forward layers of the network. In 
fact, in this phase of the learning the fourth layer is 
ignored. Mapping between the orthographic and phonological 
codes is learned. A total of 250 epochs were run, and 150 
hidden units were used. Throughout the learning process, the 
learning rate was fixed and set to 0.45 and the connections 
were updated after each stimulus presentation. The task 
involved here is complex. A large set of hidden units (150) 
was used. Because the resources were large, only slight 
differences were observed between the modified back- 
propagation proposed in this thesis and the standard one. 
Results reported here were obtained with the standard back- 
propagat ion learning algorithm.

5.6. Simulation results

The model was tested periodically during the second learning 
phase. For each test stimulus the orthographic code was fed 
into the network. The forward pass was done through the 
hidden units and a phonemic code was computed. From this 
output an error score was computed, this score being 
equivalent to the error score provided by the Seidenberg and 
McClelland model. This output is also the starting "state
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vector” from which the decoding module (the BSB) will 
iteratively settle with all units close to their minimum or 
maximum firing rates. The dynamics of this process can 
simply be represented by a single equation. If we represent 
the connections within this fourth layer by a square (77x77) 
matrix A where the element aj,j is the connection between unit 
i and j, and if we represent the level of activity in the 
layer by a real valued "state vector" V[t] where Vj.[t] is the 

activity of unit i, then the state vector at time t+1 evolves 
dynamically as a function of the state vector at time t 
following the equation:

V[t+1] = trunc (AV[t] )

where V[t] and V[t + 1] are column vectors, A is the 
connectivity matrix and trunc is the squashing function which 
limits the activity of the units in the interval [0, 1] (see 
Section 2.3).

As the system dynamically evolves, the length of the state 
vector (the level of activity) will grow. As an example of 
this process the change in length after the presentation of 
the word "AISLE" is shown in Figure 5.2. The system is said 
to have reached an interpretation when the length reaches an 
asymptote - defined by a length increase in an iteration of 
less than .05. As discussed in Section 2.3 of the thesis the 
system will then have reached a corner of the space.
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The test stimuli were the 44 words used by Waters & 
Seidenberg (1985) in a series of experiments (see Appendix 
2). Four types of test word were used: Regular Low frequency, 
Regular High frequency, Irregular Low frequency and Irregular 
High frequency. Two dependent variables were measured: An 
error score at the output from the feed-forward net and the 
number of iterations the decoding module took to settle. The 
system was tested periodically while learning the 
orthographic/phonemic correspondence. Results for both the 
error scores (Figure 5.3) and the latencies (Figure 5.4) are 
presented. It can be seen that for the error score both the 
frequency effect and the regularity by frequency interaction 
developed through learning — i.e. the model, in concordance 
with the behavioral data, has better performance for high 
frequency and/or regular words but does substantially worse 
on low frequency irregular words.

As an indication of the stability of the learning, the 
correlations were computed between simulation results for 
individual words and the median from the distribution of 
latencies obtained from human subjects. The change in this 
correlation as learning progresses is presented in Figure 
5.5. It provides a quantitative indication of the goodness of 
fit of the model. The results show that the correlation 
increases with learning and that a similar fit is obtained 
for both the error scores and the latencies.
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5.7. Conclusion.

Three conclusions can been drawn from these results. First, 
as far as error scores are concerned, the Seidenberg and 
McClelland (1989) results on frequency and regularity effects 
are replicated using a completely different representation 
and a different subset of English vocabulary. Second, the 
noisy output from the feed-forward network can be adequately 
decoded by an additional module which can provide real time 
latencies. This decoding process maps a noisy output vector 
to a binary feature vector with decoding time proportional to 
the mean-square error of the starting vector. Finally, at a 
more general level and in concordance with other results 
reported in this thesis, this implementation of a word 
recognition model demonstrates the adequacy of the 
connectionist paradigm to model the latencies of complex 
cognitive processes.

h
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CHAPTER 6 
DISCUSSION AND CONCLUSION

6.1. Summary

The main goal of the work reported here was to study possible 
implementations of time dependent processes in connectionist 
models. In Chapter 2 I reviewed the major connectionist 
models and presented results documenting some characteristics 
of a connectionist implementation of the encoder problem. 
Simulation results were provided to give the reader a feeling 
for the functioning of the feed-forward network and to allow 
subsequent comparison with a connectionist implementation of 
absolute identification.

The results demonstrated that for this problem the mean- 
square error computed at the output of the network decreases 
with learning trials and increases as the number of hidden 
units is decreased and as the set size is increased. The 
observed learning curves, when plotted on a log-log graph, 
appeared similar to the straight lines (following the power 
law of practice) observed in the behavioral data.

Chapter 3 was devoted to a review of the absolute 
identification paradigm, data, and non-connectionist models 
and in Chapter 4, the core of this thesis, I presented a 
connectionist model of absolute identification. For each of 
the three sets of assumptions involved in building a 
connectionist model - i.e. learning, architectural and
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stimulus representation assumptions — relevant considerations 
were discussed. First, in Section 4.1, I looked at learning 
and documented a learning characteristic of back-propagation 
and feed-forward networks (Rumelhart et al., 1986) that does 
not match behavioral data. In an implementation with limited 
resources (limited number of hidden units) of a simple 
identification task (based on the encoder problem), it was 
shown that that the network tends to devote its resources to 
learning a subset of stimuli while ignoring the others.

I proposed a modification of the back-propagation learning 
algorithm, mean-variance back-propagation (MV-BP), which 
allocates the resources of the network in such a way that it 
tends to perform equally well on each member of the stimulus 

set. This new algorithm was said to implement a form of 
selective attention whereby the adaptive modification of the 
network's weighted links depends on how much the square error 
for a particular stimulus deviates from the overall mean- 
square error.

With standard back-propagation, the network tends first to 
learn a subset of the stimuli and the difference in squared 
error observed between these stimuli and the others is large, 
giving a large variance for the average squared error. The 
idea underlying my revised back-propagation is simply to 
attempt to keep this variance small through adaptive change 
of the weighted links while, at the same time, also keeping 
the overall mean-square error small. The algorithm thus
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•S minimizes a weighted mixture of both mean-square error and
variance of the squared error.

The simulation results showed that the proposed mean-variance 
back-propagation (MV-BP) learning algorithm initially has 
faster learning, but when the stimulus set is large relative 
to the number of hidden units MV-BP asymptotes faster and has 
a larger asymptotic mean-square error. Also, the results 
demonstrated that the amount of information transmitted tends 
to be larger and the probability of error to be smaller when 
the MV-BP is used. Overall, the new MV-BP learning algorithm 
proved to be a better model of cognitive learning than did 
the "classical" BP learning algorithm.

In Section 4.2 I presented some considerations regarding the 
architecture of the network. To model latency I proposed a 
hybrid architecture made of a mapping module (a feed-forward 
network) and a decoding (or decision) module (a feedback 
network); thus the mapping and decoding processes are 
implemented in different structures.

Three decoding devices were considered, each made of a single 
layer of units with recurrent connections: 1) a network of 
simple integrators with thresholds similar to the cascade 
units proposed by McClelland (1979), 2) the Koch-Ullman
winner-take-all (WTA) net (Koch & Ullman, 1985) and 3) the 
Brain-State-in-a-Box (BSB) matrix model (Anderson et al.,

1
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1977) . This hybrid architecture was subsequently used to 
model absolute identification and word recognition.

In Section 4.3 of the thesis I discussed stimulus 
representations for absolute identification. The stimuli and 
responses used in absolute identification are (usually) 
unidimensional. To make the representation realistic from a 
psychological point of view, a Gaussian sensory trace 
implementation was used. A similar sensory trace is assumed 
in several non-connectionist models of identification (e.g. 
Braida & Durlach, 1972; Ashby & Gott, 1988; Ratcliff, 1978; 
Green & Swets,1966; Vickers, 1979; Marley & Cook, 1984) where 
the presentation of a stimulus generates a sensorial (or 
psychological) trace which follows a normal distribution.

The simulations reported in this section first demonstrated 
that adding a Gaussian filter on the input vectors and/or the 
target vectors does not substantially alter the learning 
curves observed in a simple identification implementation. 
However, it was shown that the filtering does change the 
structure of the stimulus/response matrix observed for large 
set sizes. While the matrices observed with 16 orthogonal 
stimulus and/or target vectors have an erratic structure, 
those observed when the target vectors follow a Gaussian 
sensory trace present a nice diagonal pattern with larger 
values on the main diagonal smoothly decreasing as one leaves 

the diagonal.
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The results also demonstrated that adding the Gaussian filter 
increases the stimulus confusion and decreases the amount of 
information transmitted. Changing the amount of overlap of 
the adjacent Gaussian distributions substantially altered the 
amount of information transmitted (T), with T increasing and 
reaching an asymptote as d' increases.

In Section 4.4, the previously described mean-variance back- 
propagation, hybrid architecture and Gaussian sensory trace 
were used to model absolute identification. The simulation 
results replicated some important behavioral data on absolute 
identification - (1) the typical power law of learning
(linear log-log plots of performance) was clearly replicated 
for both mean-square error and decoding time using a network 
of simple integrators with thresholds (IWT); (2) the set size 
effect on reaction time was clearly replicated; (3) the 
characteristic asymptotic information transmitted curves (as 
a function of the set size and range) was also replicated. 
The results appeared to be especially adequate with one 
hidden unit and IWT net as the decision module.

Additional simulation results we. a provided that demonstrated 
that the model (with one hidden unit) could very well 
replicate real latency (log-normal) distributions and some 
correct-incorrect response effects in reaction times. A 
strong relation (close to linear) was also demonstrated 
between mean-square error and decoding time provided by the 
IWT net for stimulus set sizes in the usual range. On the
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other hand, the model does not produce the end anchor effect 
in a consistent manner and simulations performed using the 
complex representations showed limited success in replicating 
compatibility effect.

In Section 4.5 the simulated model was extended to absolute 
identification of separable bi-dimensional stimuli. The 
results reported demonstrated that the proposed connectionist 
model can be successfully extend to bi-dimensional stimuli 
using a network with 2 hidden units. It is reasonable to 
believe that these results could be extended to n-dimensional 
stimulus sets with n hidden units. The stimulus/response 
matrix provided by the simulation bore a striking resemblance 
to Nosofsky's (1985) behavioral data and could be modeled 
using Luce's biased choice model. Also, the internal 
representation developed by the network appeared extremely 
similar to those inferred from MDS analyses of the 
stimulus/response matrices gathered from simulated and 
behavioral observations.

In Chapter 5 of the thesis I presented results of a simulated 
model of word recognition and naming that was intended to 
replicate two central phenomena - frequency effects (longer 
latencies for low frequency exception words) and the 
regularity effect (longer latencies for exception words) as 
described by several authors (e.g. Seidenberg, 1985; 
Seidenberg et al., 1984; Waters and Seidenberg, 1985).

I
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To model word recognition I used a hybrid architecture 
similar to that described previously, now using a brain- 
state-in-a-box network for the decoding module. The stimulus 
representation was based on a position specific (or "slots") 
encoding schema. The network was trained with more than 2000 
English words. Three conclusions were drawn from the results. 
First, as far as error scores are concerned, frequency and 
regularity effects (and their interaction) are replicated. 
Second, the noisy output from the feed-forward network proved 
to be adequately decoded by the BSB module to provide 
latencies. This decoding process allowed the network to map a 
noisy output vector to a binary feature vector with decoding 
time proportional to the mean-square error of the starting 
vector. Finally, at a more general level and in concordance 
with other results reported in this thesis, this 
implementation of a word recognition model demonstrated the 
adequacy of the connectionist paradigm to model latencies of 
(complex) cognitive processes.

6.2. Scope, limits and possibla extensions

6.2.1. On rasouress and learning

Despite some limitations, the reported results strongly 
support the use of connectionist networks to model 
identification tasks. It was demonstrated that a 
connectionist implementation can account for both cognitive 
learning and performance in identification tasks. The
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implementation provided explicit processing mechanisms and 
representations to explain cognitive learning, response times 
and limits on performance. On the other hand, the results 
showed that a connectionist model does not necessarily give a 
good fit to behavioral data. As shown in the study of the 
encoder problem, the ubiquitous power law of practice was not 
very well reproduced with the standard back-propagation 
learning algorithm. Moreover, in Section 4.1, standard back- 
propagation proved to be a poor model of learning and 
performance on simple identification — the performance of the 
network was either too good with large resources or was very 
deficient for a subset of the stimuli when the resources were 
limited.

The connectionist implementation makes explicit the nature of 
resource limitations. Resources are limited by the number of 
processing elements (hidden units) available. First, the 
dimensionality of the internal representation is limited by 
the number of hidden units; moreover, as the number of 
possible signals (stimuli) increases the processing load on 
each hidden unit increases and the performance deteriorates. 
It was seen that unidimensional absolute identification can 
be modeled using a network with one hidden unit while two 
hidden units were needed when bi-dimensional stimuli were 
used.

When limited, resources must be used parsimoniously. I 
believe that the proposed MV-BP algorithm entails a more
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efficient use of the computational power of the network by 
distributing the resources over the whole stimulus set. This 
algorithm is not based on a software "hack" nor does it rely 
on an ad hoc modification — theoretical and empirical 
considerations guided its development and in its actual form 
the mean-variance back-propagation implements a form of 
selective attention via the well developed steepest descent 
approach.

In this connectionist implementation, the mechanism 
implementing learning is explicit: weighted links are
strengthened and an internal representation developed in 
order to minimize an error criterion. The choice of the 
appropriate error criterion is thus of paramount importance. 
The mean-square error criterion used in back-propagation was 
chosen for mathematical and computational simplicity and not 
for psychological adequacy. We should consider that mean- 
square error might not be a good learning criterion for 
modeling cognitive learning. Mean-square error is not a 
natural performance indicator; in that respect other criteria 
such as information transmitted might be more appropriate. 
Lisker (1989) has already demonstrated the possibility of 
linking weight changes with overall information transmitted 
in a feed-forward network. Since behavioral data demonstrate 
that, as they learn, human beings tend, within their 

capacities, to maximize the amount of information
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transmitted, this criterion might prove to be more suited to 
modeling cognitive learning.

Perhaps the main limitation of the model proposed here comes 
from the necessity to decide a priori on the number of hidden 
units to be used. While one hidden unit appears sufficient to 
model unidimensional absolute identification, the network 
needed two units for bi-dimensional stimuli and 150 to model 
word recognition. Instead of a "pre-wired" approach, it is 
easier to conceive of cognition in a device that dynamically 
allocates resources as requested by the task. Ash (1989) 
demonstrated that this could be implemented in a feed-forward 
network where new nodes (hidden units) are added to the 
network as requested by the task. Ash demonstrated that this 
approach allows the network to develop a minimal 
dimensionality solution, although it is not clear that this 
approach could be used to model cognitive learning - 
especially one can ask what would prevent the system from 
allocating enough units to always get perfect performance?

The question of resources is also an important consideration 
in non-connectionist models of absolute identification. 
Vickers (1979) and Marley & Cook (1984) both used a limited 
capacity system to model absolute identification. Both models 
postulate limited resources to explain the end anchor effect. 
In Vickers' conception the availability of a fixed number of 
parallel processes explains the limitation while in Marley & 
Cook's model there is limited representational capability
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that bounds the discriminability among stimuli in the 
psychological space.

Although it has limited capacity (limited number of hidden 
units), the model of absolute identification that I proposed 
could not replicate the end anchor effect. A possible way to 
extend the proposed architecture in order to explain this 
effect would be to use a network with a limited number of 
connections. In the simulations reported here the tasks 
associated with larger set sizes were simulated using a 
larger number of input and output units. This means that for 
a fixed number of hidden units the number of weighted 
connections increases proportionally with the set size. In a 
more constrained implementation each hidden unit would have a 
fixed number of connections with the input and output layers 
- thus associated with each hidden unit would be a limited 
receptive field, with these receptive fields overlapping more 
for smaller set sizes than for larger ones. Since the 
receptive fields located at the ends of the input and output 
vectors would have smaller overlaps with other fields it is 
reasonable to assume that performance would be better at the 
ends. A similar mechanism was proposed by Murdock (1960) to 
account for stimulus discrimination. In any case, it is clear 
that the proposed connectionist approach is valuable in 
implementing and testing models with limited resources.

As demonstrated, not only using the right amount of resources 
is important to modeling cognitive processes, but also the
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4 representation used to encode the stimulus and response
vectors must also be carefully studied, and this even when 
implementing a simple task such as absolute identification. 
The proposed representation for absolute identification of 
simple stimuli used Gaussian sensory traces. The standard 
deviation, o, was set at 1.33 giving a d' of 0.75 between

adjacent stimuli; this value of d' was used as it is commonly 
reported in simple psychophysical identification experiments. 
In most simulations networks with n input and n output units 
were used (n being the set size), keeping the sensorial d' 
for adjacent stimuli constant while the total range increased 
with n. The task implemented was conceived as a behavioral 
experiment involving arrays of "lights" and "buttons". It was 
shown that the power law of learning and the set size effect 
on latency could be replicated. On the other hand, this 
stimulus representation might not be adequate for modeling 
absolute identification of stimuli such as pure tones varying 
in intensity where the total range has a significant 
influence on the level of performance obtained (Garner, 
1953) .

The reported simulations have shown that an increase in 
information transmitted is observed as a function of set size 
for stimulus sets with variable range and fixed d' for 
adjacent stimuli. Also, decreasing the d' (for adjacent 
stimuli) given a specific range and set size decreases the

<r*V

amount of information transmitted (Figure 4.26).

♦I
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When all the stimuli for different set sizes are bounded in 
the same range (as is typical in the absolute identification 
of pure tones of varying intensities), the theory of signal 
detectability predicts that the d' associated with adjacent 

stimuli decreases as n increases. Simulations performed using 
10-stimulus sets of variable range (thus variable d' for 
adjacent stimuli) demonstrated that the simulated model 
yields range effects similar to what is observed in the 
behavioral data (see Figure 4.27). We can thus be reasonably 
confident that the simulated model of absolute identification 
can handle both size and range effects.

Unfortunately, as mentioned earlier the simulation of 
stimulus sets with different d1 values requires much larger 
networks (typically with 10*n input and output units) for 
accurate results and is computationally very costly. This is 
why the range effect and its interaction with set size were 
not investigated further in this thesis (although I am 
currently performing additional simulations with various set 
sizes with a fixed total range).

6.2.2. On reaction time

The hybrid architecture that I proposed proved to be a simple 
and efficient way to implement time-dependent processes in a 
connectionist network. It was demonstrated that the decoding 

time is proportional to mean-square error and that decoding 
latencies match behavioral data. This implementation agrees
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with a modular view of cognition (e.g. Fodor, 1983) whereby 
specialized structures are devoted to different tasks — in 
this case either mapping or decoding. The proposed network is 
thus interpreted as part of a larger structure where 
specialized modules are activated according to task 
requirements (e.g. categorization or identification; verbal 
or motor responses). This view agrees with a suggestion by 
Nosofsky (1988) that categorization and identification are 
both based on the use of the same internal representations 
but with different decision processes.

Modularity is a very important concern of connectionism. 
Single networks have limited applications. While a single 
feed-forward network can be used to model word recognition, 
it is hard to conceive that a similar (feed-forward?) device 
could also model sentence or semantic processing at any 
interesting level. A system with structural constraints where 
sub-structures are devoted to different tasks is easier to 
imagine. Although the architecture proposed in this thesis 
(with mapping and decoding modules) is a step toward modular 
connectionism, difficulties need to be overcome before one 
can implement larger scale modular networks. For instance, 
one major problem is the implementation of dynamic 
interactions between sub-networks such as those known to 
exist between orthographic, phonemic and semantic processes.

Regrettably, my proposed architecture currently lacks an 
"interactive" component and the decoding process is

I
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î completely determined by the output from the feed-forward
network. Additionally, for each trial, the process is 
independent of the previous ones. As a consequence, this 
implementation does not produce "top-down" effects (such as 
priming), neither does it replicate sequential effects (Luce, 
1986) where the decoding process is altered by the previous 
stimuli and responses.

An appealing extension of the proposed architecture would 
involve adding a recurrent structure to the network whereby 
(partial) output from the feed-forward network could become a 
component of the input fed to the network at the next time 
step. Several researches are underway to determine the 
conditions for stability of such recurrent networks and to 
evaluate their learning characteristics (see Pineda, 1987; 
Jordan, 1988). To simulate this kind of network several 
problems need to be overcome: since most neural network 
simulators use fixed stimulus sets and do not allow recurrent 
connections new software has to be developed; moreover, it 
has not been shown that available learning algorithms (such 
as back-propagation) can be applied successfully to tasks 
where the set of possible input vectors changes dynamically. 
Nevertheless, I believe that recurrent networks will prove 
very useful for the implementation of time dependent 
processes and might allow the development of highly modular 
connectionist architectures.

1
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6.3. Conclusion

The work reported here has demonstrated a possible 
implementation of time dependent identification processes in 
a connectionist model. A new connectionist learning algorithm 
(the MV-BP) has also demonstrated that it can be used to 
model cognitive learning in simple absolute identification 
tasks. Finally, the implementation of a word recognition 
model has proved the feasibility of building a connectionist 
model of more complex identification tasks.
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APPENDIX 1 
ZIP_NET A NEURAL NETWORK SIMULATOR.

Al.l. Introduction.

Zip_net is a fast (up to 30 000 weight updates per second on 
a Sun 3), easy to use, "batch” neural network simulator. It 
was developed to provide a convenient way to perform a series 
of simulations while varying one or several simulation 
parameters. Zip_net is a three layer feed-forward back- 
propagation (and mean-variance back-propagation) network 
simulator. It allows the use of a real time decoding module 
to build hybrid architectures. The software allows the user 
to periodically save the network weights, output and hidden 
vectors as well as performance indicators such as mean-square 
error, probability correct, and variance. Additionally, it 
provides a convenient way to restart a crashed simulation 
from partial results and powerful trace facilities for 
debugging. Zip_net does not provided any fancy graphics (as 
do Neuralware or RSC) and its scope of application is limited 
(only three layer feed-forward networks) . Nonetheless it has 
the advantage that a simulation can be set up rapidly without 
complicated declaration and without recompilation.

A1.2. History.

In October 1987 I started developing software to simulate 

feed-forward networks and the back-propagation learning 
algorithm. I used C on a SUN-2 computer. The program was
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1 modified and recompiled for each new simulation. To make the 
modification easier the basic parameters were implemented 
using <#define> macros. By January 1988 the software had been 
largely rewritten, optimized and ported to a SUN-3: Zip_net 
version 1.0 was born. It was first used for simulation of 
large networks implementing a model of word recognition and 
naming. The simulator proved to be fast and reliable but the 
user interface was clumsy, and in case of a system crash 
restarting a run from partial results was a difficult task. 
It became a critical problem since a single run of the word 
recognition model could take several days. As the complexity 
and number of simulations I ran increased it became clear 
that I needed a more convenient and reliable tool.

In October 1988 I started developing a better user interface, 
implemented a small parser, added dynamic allocation of 
memory and corrected some underflow problems. After several 
updates of version 1, Zip_net version 2.0 was completed in 
the beginning of 1989. From then on, there was no need to 
recompile the program to run new simulations. The simulation 
parameters were defined in an input file through simple 
keywords and parameters. The format of the definition file is 
inspired by those used in popular statistical packages. In 
the following months I started distributing the simulator to 
students and researchers. Since then, the simulator has had 
minor updates. Zip_net Version 2.1c is the latest update.
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A major update is under preparation. Version 3.0, which 
should be available by Summer 1990, will have a more 
homogeneous presentation (as it is the output is bilingual 
English/French), will allow the simulation of arbitrary 
connected networks (including recurrent nets) and will have 
extended graphic capabilities. Also, some problems that have 
been reported with the parser will be corrected and a 
complete manual will be provided.

A1.3. Setting the run.

The following is an example task definition to run three
simulations (of the encoder problem) using different numbers
of hidden units over the same stimuli set:
*- example de simulation 
* m  avec Zip_net
TITLE = example de trois simulations...
NIU - 10 
NOU = 10 
NHU - 1 
EPOCHN- 1000 
REPORT- 100 
SAVE - 500 
STIMF - encoderlO 
EROUT - output1 
NETOUT- netl 
PRINT - 2 
+=
NHU = 2 
EROUT - output2 
NETOUT- net2 
+«
NHU - 2 
EROUT - output2 
NETOUT- net2

The syntax is [keyword]= [parameter]J. Blanks are optional. 

Parameters can be specified in any order. The keywords used 
here have the following meanings:
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* comment line, skipped
TITLE title of the run
NIU number of input units
NOU number of output units
NHU number of hidden units
EPOCHN number of epochs to be performed
REPORT interval at which the network status is reported
SAVE interval at which the network structure is saved
STIMF name of the file containing the stimuli and target

vectors
EROUT file used to save goodness of fit indicators when

reports are done.
NETOUT file used to save the network structure (weighted

links)
PRINT amount of information printed on the output

listing.
0 is minimum 5 is maximum details

+= new task: all previous parameters are reused except
for the ones redefined.

Other parameters needed for the simulation such as the back- 
propagation learning rate have default values. The input file 
starts a first simulation with a network of one hidden, 10 
input and 10 output units. The number of hidden units and the 
output files used are redefined for the second and third 
task. All other parameters keep the same value. This example 
input file required PRINTlevel=2. It generated the following 
output:
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C
ZIP_NET version 2.1c by Yves Lacouture 1989 

McGill University

parse: this is task # 1: 
parse; les variables sont::

0 NOU - 10
1 NHU - 1
2 NIU - 10
3 MAX - 0
4 TRACE - 0
5 EPOCHN - 1000
6 EPOCHS - 1
7 REPORT - 100
8 SAVE - 500
9 NETOUT - netl
10 NETIN -
11 STIMF - encoderlO
12 TITLE - example de trois simulations...
13 EROUT - outputl
14 TEMPER - 0.45
15 ALPHA - 0.0
16 NOISE - 0.0
17 FILLRAND - 0.5
18 * -
19 SMOUTH - 0
20 NEW -
21 PRINTLEVEL - 2
22 RESETFILE - 1
23 BSBIN -
24 FFORCE - 1.0
25 GAMMA - 1.0
26 SAVEOUT - saveO.out
27 SAVEHIDDEN -
28 WINNERGAIN - 0
29 MAXBSB - 0
30 RUNNERGAIN - 0.0
31 ERD - detail_outl
32 MAXWC - 500
33 SEED - 0
34 LAMBDA - 0
35 DELTA - 0
36 STREPORT - 0
37 PROBOUT -
38 STPROB - 0
39 SMOUTH_0 - 0
40 STARTSAVEOUT - 0
41 LEARN - 1
42 LOADREAL - 0
43 GAININ - 1

example de trois simulations...

fillrnd: the range is [-0..5000 —  0.5000] 
loadstimuli: loaded 20 stimuli from file encoderlO 

j main: error[100]- 0.289609
* main: error[200]- 0.280941
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main: error[300]- 0.266635
main: error[400]- 0.257478
main: error[500]“ 0.252269

savenet: reseting file netl
main: error[600]- 0.248932
main: error[700]- 0.246470
main: error[800]“ 0.244480
main: error[900]“ 0.242804
main: error[1000]~ 0.241390

savenet: reseting file netl
main: closing saveO.out
main: task done required 59 secondes (real time)

: (~ 8474.58 weigth update per sec.)

* ZIP_NET version 2.1c by Yves Lacouture 1989
* McGill University

parse: this is task t 2:

description of task #2 and #3

savenet: reacting file net3 
main: closing saveO.out
main: task done required 82 secondes (real time)

: (~ 11345.9 weigth update per sec.) 
main: end of input file
mam: 1’ensemble des taches a requis 229 secondes (temps reel) 
main: SORTIE NORMALE

The first part of the listing is the values set or assumed by 
default for the 43 keywords used by the simulator. As 
demonstrated by this example run not all parameters need to 
be defined. The second part of the listing presents a 
progress report as the simulation is performed.

Zip_net being a large structured program, the procedure 
issuing the message is always mentioned. This allows better 
control of the simulated process and makes it easier to find 
and correct bugs. As can be seen numerous things happen after 
the procedure parse has set up the task parameters. First,
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procedure fillrnd allocates random values to all weighted 
connections in the specified net. Unless specified in the 
description file (e.g. FILLRND=0.1), this procedure uses ±0.5 
bounds. If NETIN=<filename> is specified, then instead of 
being assigned random values, the weights are loaded from 
<filename> by procedure loadnet.

Then the stimulus/response pairs are loaded. The line 
STIMF=encoderlO in the task description file specified that 
these are loaded from the file encoderlO. The format is 
assumed to be binary (%ld) using alternative lines for 
stimulus/response vectors. The file encoderlO has the 
following structure:

ioooooooo
100000000
010000000
010000000
001000000
000100000
000100000
000010000
000010000
000001000
000001000

This input file could also be free format, in which case 
LOADREAL=l must be specified in the task definition. The 
procedure loadstimuli reports that 20 vectors (10 
stimulus/response pairs) are loaded.

Once the network has been set up, the learning process starts 
unless learn=0 is specified. In that case no weight
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modifications occur. The number of epochs to be performed in 
this case is EPOCHN=1000. Each epoch consist of the whole 
stimulus set unless the keyword EPOCHS is specified (e.g. 
EP0CHS=5), in which case a subset of the stimuli is randomly 
selected within each epoch.

The keyword REPORT=100 specifies that progress information is 
to be reported every 100 epochs. When reports are performed 
global performance indicators (e.g. MSE, variance...) are 
saved in the file specified by the keyword EROUT (e.g. 
EROUT=outl). At the same time detailed performance indicators 
for individual stimuli are saved in the file specified by 
ERD=<filename>. If no filename is supplied a default name is 
used. The printed output shows MSE computed over the epoch 
when a report is done. If STREPORT=n (start report) is 
specified then the report will not be done until the number 
of epochs performed has exceeded this value, e.g. with 
STREPORT=400 no reports are performed unless at least 400 
epochs were performed.

Other keywords allow the user to save output vectors 
(SAVEOUT) or hidden vectors (SAVEHIDDEN) in specified files. 
Similarly, the keyword PROBOUT allows the user to save the 
stimulus/response array (based on the maximum response of the 
output units) in the specified file. The keyword STPROB 
(start probability) specifies the number of epochs to be 
performed before the matrix is recorded.

i
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The line SAVE=500 indicates that the weighted connections of 
the network are saved after each 500 learning epochs. The 
declaration NETOUT=netl indicates that network weighted links 
values are to be save into file "netl". If the file exists it 
is overwriten unless RESETFILE=0 is specified, then the 
weight structure is happened at the end of the file. The 
output format is the same as the one used by the program to 
load a network structure when the keyword NETIN is specified. 
This allows easy use of previously learned networks. Each 
time the net is save either 

savenet: reseting file netl

or
savenet: happen to file netl

is reported depending on whether the file is overwritten or 
not. If NEW=1 is specified, every time the network is saved 
different files are used. A suffix indicating the epoch 
number is automatically added to the output filename (e.g. 
netl.500, netl.1000, ...).

At the end of the task, the time required and a simulation 
performance indicator are reported. Then either the program 
exits or if the string "+=" is encountered in the input file, 
then another task is setup by the parser. For the new task 
all previously defined parameters are reused unless changes 
are specified. When all the tasks have been completed, the 
exit condition and the overall running time are reported.
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A1.4. Additional controls and options.

Although Zip_net allows the users to load any real valued 
vector there might be situations where alterations of the 
vectors should be done once the vectors are loaded.

Adding noisa. The most useful alteration is to add white 
noise to the input vector. This is done dynamically for each 
stimulus presentation. The keyword used is NOISE and the 
numerical value supplied is the approximate percentage of 
noise (length of noise vector divided by length of input 
vector) added (e.g. NOISE=0.20, add 20% noise) .

Gaussian filters. If the input or target vectors are binary 
encoded, than either of them can be filtered in order to 
present a smooth normal shaped distribution. Keywords are 
SMOUTHI and SMOUTHO to respectively filter the input and 
target vectors. The numerical value supplied corresponds to 
half the total range of the gaussian distribution. The total 
area under the Gaussian curve is kept equal to 1.

Gain on tha input vactor. Because the input vectors are 
often imported from other applications, it is sometime useful 
to scale the original vector. The real value provided through 
the keyword GAININ allows this - e.g. if GAININ=0.5 is 
specified the input vector is simply multiplied by 0.5.

The specific models I developed required the use of a hybrid 
architecture where a decoding module is connected at the
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output of the feed-forward network. Zip_net allows the use of 
three types of decoding modules: Anderson's Brain-State-in-a- 
Box, Koch-Ullmann's Winner-Take-All network, and a network of 
simple integrators with thresholds. No one or several 
decoding modules can be used parallely. This is useful when 
decoding times are to be compared. For all three modules the 
decoding time is supplied in the EROUT and ERD file when 
reports are provided.

Tha BSB decoding nodule. Although the program supports the 
BSB decoding module it does not allow modification of the BSB 
weighted links. Learning must first be done using other 
software. The keyword BSBIN=<filename> is used to specify the 
name of the file containing the values of the BSB weighted 
links. The weighted links must be written in free format. An 
upper limit to the maximum number of iterations performed by 
the BSB is set through MAXBSB. For example, if MAXBSB=100 is 
specified, the decoding process will be stopped after 100 
iterations. This is useful to prevent the endless loop 
encountered with stationary state vectors that do not 
converge. In that case the reaction time provided is MAXBSB.

The main diagonal of the connection matrix A+I can be scaled, 
the keyword being FFORCE (feed-back force); when FFORCE=0 the 
main diagonal values are set to zero. The output vector from 
the feed-forward net can also be scaled - this is done 
through the use of the keyword GAMMA, with default value 1.0 
meaning no scaling.
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Winnar-Taka-All decoding module. This module is easily 
activated through the keyword WINNERGAIN. If WINNERGAIN=0 
(default) the module is not used. The maximum number of 
decoding cycles is set through MAXWC.

Integrators with thresholds. The declaration 
RUNNERGAIN=<n> activates the decoding network of integrators 
with threshold. The value supplied fixes the gain of the 
feedback. Again if RUNNERGAIN=0 (default) the module is not 
activated.

Control over the learning rata. Zip_net implements the 
standard back-propagation as well as my mean-variance-back- 
propagation. Step size relative to mean-squares error and 
variance of error are respectively defined through the 
keywords TEMPER and LAMBDA. If LAMBDA=0 standard back- 
propagation is used. Default values are TEMPER=0.45 and 
LAMBDA=0.

Resetting the random number generator. Zip_net's random 

number generator uses the time of day (in seconds) to 
initiate the pseudo-random sequence. On some occasions it 
might be useful to run several simulations with the same 
starting random weights and same noise vectors. This can be 
easily done if, for all simulations, the random number 
generator is reset with the same seed. The keyword SEED=<n> 
specifies that the integer n is used to reset the generator. 
If SEED=0, time of the day is used instead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

154

Control ovar th® printed output.

Three keywords allow the user to modify the printout: 
TITLE=<str>, PRINT=<n>, and TRACE=<n>. TITLE puts the 
specified string (in a box) at the beginning of the task 
output. PRINT (PRINTlevel) controls the amount of information 
provided on the listing from 0 (minimum printout) to 4 
(maximum printout details) . For debugging purposes the TRACE 
parameter provides 5 levels of tracing (0 minimum, 4 
maximum). Note that the trace facility can generate a lot of 
output.

A1.5. Description of th® control langumg®.
Comment line: skipped. Default=NULL
Real number setting the learning rate 
associated with the mean-square error gradient 
of back propagation. Default=0.45
File name of the BSB weighted links structure. 
If non-null the BSB connections are loaded and 
BSB decoding is performed. Default=NULL
Number of epochs to perform. Default=l
Number of stimuli presented in each epoch. If 
EPOCHS=0 the whole stimuli set is presented. 
Default=0
File name, where the detailed performance 
indicators are outputted. Default=NULL
File name where the global performance 
indicators are outputted. Default=”ERout"
Real number setting the strength of the feed 
back force used for the BSB. Default=1.0

Real number setting the bounds of the random 
number used as starting values for the 
weighted links. Not used if the parameter 
NETIN=<filename> is specified. Default=0.5

ALPHA

BSBIN

EPOCHN
EPOCHS

ERD

EROUT

FFORCE

FILLRAND
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GAININ

GAMMA

LAMBDA

Real number setting the gain factor applied to 
the input vector. Default=1.0
Real number setting the gain at the input to 
the BSB decoding module. Default=1.0
Real number setting the learning rate 
associated with the variance gradient of the 
minimum variance back-propagation. If LAMBDA=0 
standard BP is used. Default=0

LEARN Integer switching on and off the learning
process: 0=off, l=on. Default=l.

LOADREAL Integer specifying the type of stimulus
vectors loaded. 0=binary packed, 1= free 
format. Default=0

MAXBSB Integer specifying the maximum number of
iterations performed by the BSB decoding 
module. Default=500

MAXWC Integer specifying the maximum number of
iterations performed by the winner-take-all 
net. Default=100

NETIN File name indicating where the network
weighted links are to be loaded from. 
Default=NULL

NETOUT File name indicating where the network
weighted links are to be saved. Default=NETout

NEW Integer specifying if new files are to be used
each time the weighted links are saved. 0=same 
filename, l=new filename. Default=0

NHU Integer number of hidden units.
NIU Integer number of input units.
NOISE Real number: percentage of noise dynamically

added to the input vector at each stimuli 
presentation. Default=0

NOU Integer number of output units.
PRINT Integer setting the detail level in the

printed output. 0=minimum, 4=maximum.
Default=l

PROBOUT File name use to save the stimulus/responses
incidence matrix. Default=,,PROBout"
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i REPORT

RESETFILE

RUNNERGAIN

SAVE

SAVEHIDDEN

SAVEOUT

SEED

SMOUTHI

SMOUTHO

STARTSAVEOUT 

STIMF 

STPROB

STREPORT

TEMPER

Integer number indicating the interval of 
reports. Default=50
Integer number indicating whether NETOUT is 
overwritten. 0= data happened, l=overwritten. 
Default=l
Real number that sets the gain of the decoding 
network of integrators with threshold. For 
RUNNERGAIN=0 this decoding device is not used. 
Default=0
Integer number indicating the interval for 
saving the network weights. If SAVE=0 no 
savings are done. Default=0
File name indicating where the network hidden 
vectors are to be saved. If not specified the 
hidden vectors are not saved. Default=NULL, 
e.g. not saved
File name indicating where the network output 
vectors are to be saved. If not specified the 
output vectors are not saved. Default=NULL, 
e.g. not saved
Integer used to reset the random number 
generator. [
If SEED=0 (Default) time of day is used.
Integer value specifying the range of the 
Gaussian filter applied to the input vectors. 
If SMOUTHI=0 no filtering is done. Default=0
Integer value specifying the range of the 
Gaussian filter applied to the target vectors. 
If SMOUTHO=0 no filtering is done. Default=0
Integer number of epochs indicating when to 
start to save the output vector. Default=l
File name indicating where the stimuli are to 
be loaded from. Default=NULL
Integer number of epochs indicating when to 
start to compute the stimulus/response matrix 
Default=l
Integer number of epochs indicating when to 
start to perform reports. Default=l
Real number. Same as ALPHA. Default=0.45 
(this is for historical reasons)
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TITLE

TRACE

String delimited by the end-of-line character, 
indicates the title of the task.
Integer setting the amount of detail provided 
by the debugging trace facility. 0=trace off, 
4=maximum . Default=0

WINNERGAIN Real number setting the gain of the winner- 
take-all decoding network. For WINNERGAIN=0 
this decoding device is not used. Default=0

The 15 most commonly encountered error messages:

l •« getfile file <> not found"
2 if loadstimuli loading in real mode...binary file found"
3 II loadstimuli loading in binary mode...float file found"
4 II loadstimuli odd number of stimuli",
5 •l loadnet _NIU_ does not match declaration"
6 II loadnet _NHU_ does not match declaration"
7 II loadnet _NOU_ does not match declaration"
8 II loadnet unexpected EOF"
9 ll main unexpected EOF"
10 II main parameters exceed maximum declaration"
11 II main out of memory"
12 II parse Error in parsing line <>: unknown keyword
13 II parse unexpected EOF"
14 II <fct> SORTIE en ERREUR<<code>)"
15 ll <fct> undocumented error"
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APPENDIX 2 
LIST OF TEST WORDS

Regular Irregular
MODE DEAF
DOCK WORM
PEST PHASE
HIKE PLAID
MATH TOMB
GREED SOOT

Low Frequency CHORE WAND
GRILL SEW
BAKES WAN
FERN CASTE
TILE STEAK
RUST GROSS

STILL GIVE
FEEL SAYS
THIN BREAK
CORN TOUCH
NINE LOSE
RACE CHOOS

High Frequency LEAST WATCH
FACE HEARD
WAKE DOLL
THESE SOME
BEACH WOOL
SHELL WASH

1

1

i
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APPENDIX 3 
TRAINING SET FOR 

THE WORD RECOGNITION MODEL
A computerized version of this lexicon including relative 
word frequency and corresponding phonemy is available from 
the author.
A ALFRED ARTICLE BEAM BLOW BUILT
ABILITY ALIVE ARTIST BEAR BLUE BUREAU
ABLE ALL ARTS BEAT BOARD BURNED
ABOUT ALLOW AS BEAUTY BOARDS BURNING
ABOVE ALMOST ASIDE BECAUSE BOAT BURST
ABROAD ALONE ASK BECOME BOATS BUS
ABSENCE ALONG ASKING BECOMES BOB BUSH
ACCEPT ALREADY ASPECT BED BODIES BUSY
ACCOUNT ALSO ASPECTS BEDROOM BODY BUT
ACHIEVE ALWAYS ASSUME BEEN BOMB BUY
ACRES AM ASSURE BEER BOND BY
ACROSS AMERICA ASSURED BEFORE BONDS CALL
ACT AMONG AT BEGAN BONE CALLING
ACTING AMOUNT ATOM BEGIN BOOK CALLS
ACTION AMOUNTS ATOMIC BEGINS BOOKS CALM
ACTIONS AN ATOMS BEGUN BORN CAMERA
ACTIVE ANCIENT ATTACK BEHIND BOTH CAMP
ACTS AND ATTEMPT BEING BOTTLE CAN
ACTUAL ANGELES ATTEND BEINGS BOTTOM CANE
ADAM ANGER AUGUST BELEIF BOUGHT CANNOT
ADAMS ANGLE AUTHOR BELEIVE BOUND CAPABLE
ADD ANGRY AVENUE BELONG BOWL CAPTAIN
ADDRESS ANIMAL AVERAGE BELOW BOX CAR
ADMIT ANIMALS AVOID BENCH BOY CARE
ADVANCE ANNUAL AWARD BENEATH BOYS CAREER
ADVICE ANODE AWARE BENEFIT BRAIN CAREFUL
ADVISED ANOTHER AWAY BENT BRANCH CARRY
AFFAIR ANSWER AXIS BESIDE BREAD CARS
AFFAIRS ANSWERS BABY BEST BREAK CASE
AFFECT ANY BACK BETTER BREAK CASH
AFFORD ANYONE BAD BETWEEN BREATH CAST
AFRAID ANYWAY BADLY BEYOUND BRIDE CASTE
AFRICA APART BAG BIBLE BRIDGE CATCH
AFTER APPEAL BAKER BIG BRIEF CAUSE
AGAIN APPEAR BAKES BIGGER BRIEFLY CELL
AGAINST APPEARS BALANCE BILL BRIGHT CELLS
AGE APPLY BALL BILLION BRING CENT
AGENCY APRIL BALLET BILLS BRISK CENTER
AGENT ARC BAND BIRD BRITISH CENTERS
AGENTS AREA BANK BIRDS BROAD CENTRAL
AGES AREAS BANKS BIRTH BROKE CENTURY
AGREE ARM BAR BIT BROKEN CHAIN
AHEAD ARMED BARS BITTER BROOD CHAIR
AID ARMS BASE BLACK BROTHER CHAMBER
AIM ARMY BASIC BLAME BROUGHT CHANGE
AIR AROUND BATTLE BLIND BROWN CHAPTER
AISLE ARRIVED BAY BLOCK BRUSH CHARGE
AISLE ART BE BLOCKS BUDGET CHARTER
ALERT ARTERY BEACH BLOOD BUILD CHECK
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CHEST COMPANY DANCING
CHICKEN CONCEPT DANGER
CHIEF CONCERN DARE
CHILD CONCERT DARK
CHINA CONDUCT DATA
CHINESE CONTACT DATE
CHOICE CONTAIN DAY
CHOIR CONTENT DAYS
CHOOSE CONTEXT DEAD
CHORE CONTROL DEAF
CHRIST COOK DEAL
CHURCH COOL DEALING
CHUTE COOLING DEAN
CIRCLE COPE DEAR
CITIES COPY DEATH
CITY CORD DEBT
CIVIL CORE DECADE
CLAIM CORN DECADES
CLAIMED CORNER DECIDE
CLAIMS CORPS DEED
CLANG CORRECT DEEP
CLASS COST DEEPER
CLASSIC COSTS DEEPLY
CLAY COTTON DEFENSE
CLEAN COULD DEFINED
CLEAN COUNCIL DEGREE
CLEAR COUNT DEMAND
CLEARLY COUNTRY DEMANDS
CLERCK COUNTY DENY
CLIMB COUPLE DEPEND
CLOSE COURSE DEPENDS
CLOSELY COURT DEPTH
CLOSER COURTS DERIVED
CLOTH COUSIN DESIGN
CLOTHES COVE DESIRE
CLOUDS COVER DESIRED
CLUB CRAMP DESK
CO CRAZY DESPITE
COAST CREATE DESTROY
COAT CREDIT DETAIL
COATING CREW DETAILS
CODE CRIME DEVELOP
COFFEE CRISIS DEVICE
COLD CROSS DID
COLLEGE CROWD DIE
COLONEL CRY DIED
COLOR CUBA DIGNITY
COLORS CULTURE DIME
COLUMN CUP DINNER
COLUMNS CURIOUS DIRECT
COME CURRENT DIRT
COMEDY CURVE DIRTY
COMES CUT DISEASE
COMFORT CUTTING DISPLAY
COMING DAILY DISPUTE
COMMAND DAMAGE DISTANT
COMMENT DAMN DIVINE
COMMON DANCE DO

DOCK EGGES FAILURE
DOCTOR EIGHT FAIR
DOG EITHER FAIRLY
DOGS ELEMENT FAITH
DOING ELEVEN FALL
DOLL ELSE FALLEN
DOLLAR EMOTION FALLING
DOLLARS EMPTY FAMILY
DONE END FAMOUS
DOOR ENDS FAR
DOORS ENEMY FARM
DOTS ENERGY FARMERS
DOUBLE ENGINE FASHION
DOUBT ENGLISH FAST
DOWN ENJOY FAT
DOZEN ENOUGH FATE
DRAMA ENTER FATHER
DRAW ENTIRE FAWN
DRAWING EQUAL FEAR
DRAWL EQUALLY FEARS
DREAM ERROR FEATURE
DRESS ERRORS FED
DRILL ESCAPE FEDERAL
DRINK ESTATE FEED
DRIVE EUROPE FEEL
DRIVER EVEN FEELING
DRIVING EVENING FEELS
DROP EVENT FEET
DROVE EVENTS FELL
DRUNK EVER FELLOW
DRY EVERY FELT
DUE EVIDENT FEMALE
DURING EVIL FERN
DUST EXACTLY FEW
DUTIES EXAMINE FEWER
DUTY EXCEPT FICTION
DYING EXCESS FIELD
DYKE EXIST FIELDS
EACH EXISTS FIFTEEN
EARLIER EXPECT FIFTY
EARLY EXPENSE FIG
EARS EXPLAIN FIGHT
EARTH EXPOSED FIGURE
EASE EXPRESS FIGURES
EASILY EXTENT FILE
EAST EXTRA FILL
EASTER EXTREME FILLING
EASY EYE FILM
EAT EYES FINAL
ECONOMY FACE FINALLY
EDGE FACING FIND
EDITION FACT FINDING
EDITOR FACTOR FINDS
EFFECT FACTORS FINE
EFFECTS FACTS FINGER
EFFORT FACULTY FINGERS
EFFORTS FADE FINISH
EGG FAIL FIRE
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FIRM FUN GREW HELD IDEA KEPT
FIRMLY FUND GRILL HELL IDEAL KEY
FIRMS FUNDS GROSS HELP IF KEYS
FIRST FUNNY GROSS HELPING ILL KID
FISCAL FURTHER GROUND HENCE IMAGE KILL
FISH FUTURE GROUNDS HER IMAGES KILLED
FIT GAIN GROUP HERE IMAGINE KIND
FIVE GAINED GROUPS HERE IMPACT KINDS
FLAT GAME GROW HERO IMPROVE KING
FLESH GAMES GROWING HERSELF IN KITCHEN
FLEW GARDEN GROWN HIDE INCH KNEE
FLIGHT GAS GROWTH HIGH INCLUDE KNEES
FLOAT GATE GUARD HIGHER INCOME KNEW
FLOOD GAUGE GUESS HIGHLY INDEED KNIFE
FLOOR GAVE GUEST HIGHWAY INDEX KNOW
FLOW GENERAL GUESTS HIKE INDIA KNOWING
FLOWERS GERMAN GUIDE HILL INDIAN KNOWN
FLY GERMANY GUILE HILLS INITIAL KNOWS
FLYING GET GUILT HIM INNER LABOR
FOAM GETS GULL HIMSELF INSIDE LACK
FOCUS GETTING GUN HIS INSTANT LADY
FOLK GHOST GUNS HISTORY INSTEAD LAID
FOLLOW GIFT GUY HIT INTENSE LAKE
FOLLOWS GIRL HAD HOE INTO LAND
FOOD GIRLS HAIR HOLD IRON LARGE
FOODS GIVE HALF HOLDING IS LARGELY
FOOT GIVEN HALL HOLDS ISLAND LARGER
FOR GIVES HAND HOLE ISSUE LASH
FORCE GIVING HANDLE HOLES IT LAST
FOREIGN GLAD HANDS HOLY ITALIAN LATE
FOREVER GLANCE HANS HOME ITALY LATER
FORGET GLASS HAPPEN HOMES ITEM LATIN
FORM GO HAPPENS HONEST ITEMS LATTER
FORMAL GOAL HAPPY HONOR ITS LAW
FORMER GOALS HARBOR HOPE ITSELF LAWS
FORMS GOD HARD HOPES JACK LAWYER
FORT GOES HARDLY HORSE JACKET LAY
FORTH GOING HARM HOST JAPAN LEAD
FORTY GOLD HARMONY HOT JAZZ LEADER
FORWARD GOLDEN HARRY HOTEL JESS LEADERS
FOUND GOLF HAS HOUR JEWS LEADING
FOUR GONE HAT HOURS JIM LEADS
FOURTH GOOD HATE HOUSE JOB LEAF
FOWL GOODS HAVE HOUSES JOBS LEAGUE
FRAME GRACE HAVING HOUSING JOHN LEANED
FRANK GRADE HE HOW JOIN LEARN
FREE GRAND HEAD HOWEVER JOINT LEAST
FREEDOM GRANT HEADS HUGE JOURNAL LEAVE
FREIND GRAPE HEALTH HUMAN JOY LEAVES
FREINDS GRASS HEALTHY HUMOR JUDGE LEAVING
FRENCH GRAVE HEAR HUNDRED JULY LED
FRESH GRAY HEARD HUNG JUNE LEE
FRIDAY GREAT HEARING HUNTING JUNIOR LEFT
FROM GREATER HEART HURRY JURY LEG
FRONT GREATLY HEAT HURT JUST LEGAL
FRUIT GREED HEAVEN HUSBAND JUSTICE LEGS
FULL GREEK HEIGHT I KEEP LENGTH
FULLY GREEN HEIR ICE KEEPING LESS
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LET MADE MIDDLE MUST OBVIOUS PALMER
LETTER MAGIC MIGHT MY OCCUR PANELS
LETTERS MAIL MIKE MYSELF OCEAN PAPA
LEVEL MAIN MILE MYSTERY OCTOBER PAPER
LEVELS MAJOR MILES MYTH ODD PAPERS
LIBERAL MAKE MILK NAME OF PARENTS
LIBERTY MAKES MILLION NAMELY OFF PARIS
LIBRARY MAKING MIND NAMES OFFER PARK
LICENSE MALE MINDS NARROW OFFERS PARKER
LIE MAMA MINE NATION OFFICE PART
LIES MAN MINIMUM NATIONS OFFICER PARTIES
LIFE MANAGER MINOR NATIVE OFTEN PARTLY
LIGHT MANKIND MINUTE NATURAL OIL PARTS
LIGHTS MANNER MINUTES NATURE OLD PARTY
LIKE MANTLE MISS NAVAL OLDER PASS
LIKELY MANY MISSILE NAVY ON PASSAGE
LIMIT MARCH MISSING NEAR ONCE PASSED
LIMITS MARINE MISSION NEARBY ONE PASSING
LINE MARK MIST NEARLY ONES PAST
LINES MARKED MISTAKE NECK ONLY PAT
LIPS MARKET MIX NEED ONSET PATENT
LIQUID MARTIN MOBILE NEEDS ONTO PATH
LIQUOR MARY MODE NEGRO OPEN PATIENT
j-iST MASSIVE MODEL NEGROES OPENED PATTERN
LISTEN MASTER MODELS NEITHER OPENING PAY
LISTS MATCH MODERN NET OPENLY PAYMENT
LITTLE MATH MOIST NEUTRAL OPERA PEACE
LIVE MATTER MOLD NEVER OPERATE PEACH
LIVES MATTERS MOLE NEW OPINION PEAR
LIVING MAY MOMENT NEWS OR PEEL
LOAD MAYBE MOMENTS NEXT ORDER PEEP
LOAN MAYOR MONDAY NICE ORDERS PENCIL
LOCAL ME MONEY NIECE ORGANIC PEOPLE
LOCATED MEAN MONTH NIGHT ORIGIN PEOPLES
LOGICAL MEANING MONTHS NIGHTS OTHER PER
LONG MEANS MOOD NINE OTHERS PERCENT
LONGER MEANT MOON NO OUCH PERFECT
LOOK MEASURE MOOSE NOBODY OUGHT PERHAPS
LOOKING MEAT MORAL NODDED OUR PERIOD
LOOKS MEDICAL MORE NOISE OUT PERIODS
LOOM MEDIUM MORNING NONE OUTLOOK PERMIT
LOOSE MEET MOST NOR OUTPUT PERSON
LORD MEETING MOSTLY NORMAL OUTSIDE PERSONS
LOSE MEETS MOTH NORTH OVER PEST
LOSS MEMBER MOTHER NOSE OVERALL PETER
LOST MEMBERS MOTION NOT OWN PHASE
LOT MEMORY MOTOR NOTE OWNER PHIL
LOTS MEN MOTORS NOTES OWNERS PHONE
LOVE MENTAL MOUSE NOTHING OXYGEN PHRASE
LOVELY MENTION MOUTH NOTICE PACE PIANO
LOW MERCER MOVE NOTION PAGE PICK
LUCK MERE MOVES NOVEL PAID PICTURE
LUMBER MERELY MOVING NOW PAIL PIECE
LUNCH MESSAGE MUCH NUMBER PAIN PIKE
LYING MET MURDER NUMBERS PAINT PILOT
LYMPH METAL MUSCLE OBJECT PAIR PINK
MACHINE METHOD MUSH OBJECTS PALACE PINT
MAD METHODS MUSIC OBTAIN PALE PITCH
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PLACE PROMISE RECORDS ROUSE SEIZE SIEVE
PLAID PROPER RECTOR ROUTE SELDOM SIGHT
PLAIN PROTECT RED ROUTINE SELF SIGN
PLAN PROUD REEF ROW SELL SIGNAL
PLANE PROVE REGARD ROY SENATE SIGNS
PLANS PROVIDE REGION ROYAL SENATOR SILENCE
PLANT PUBLIC REGIONS RULE SEND SILENT
PLANTS PULL RELATED RULES SENDING SIMILAR
PLATE PUMP RELEASE RUN SENIOR SIMPLE
PLAY PURE RELIEF RUNNING SENSE SIMPLY
PLAYER PURPOSE REMAIN RUNS SENT SIN
PLAYING PUSH REMAINS RURAL SEPT SINCE
PLAYS PUT REMARKS RUSSIAN SERIES SING
PLEASE PUTTING REMOVAL RUST SERIOUS SINGING
PLENTY QUALITY REMOVE SACRED SERVE SINGLE
PLOT QUARTER REPORT SAD SERVES SIR
PLOW QUEEN REPORTS SAFE SERVICE SISTER
PLUS QUICK REQUEST SAFETY SERVING SIT
POCKET QUICKLY REQUIRE SAID SESSION SITE
POEM QUIET RESERVE SAKE SET SITTING
POEMS QUIETLY RESPECT SALARY SETS SIX
POET QUITE REST SALE SETTING SIZE
POINT RACE RESULT SALES SETTLES SKILLS
POINTS RADIO RESULTS SALT SEVEN SKIN
POLICE RAIN RETIRED SAME SEVERAL SKY
POLICY RAISE RETURN SAMPLE SEVERE SLAM
POOL RAISED RETURNS SAN SEW SLAVERY
POOR RAISING REV SAND SEX SLAVES
POPE RANDOM REVENUE SANK SHADOW SLEEP
PORCH RANGE REVIEW SAT SHALL SLIGHT
PORK RAPID RICE SAVE SHAPE SLIP
POSE RAPIDLY RICH SAW SHARE SLOW
POST RARE RIDE SAY SHARES SLOWLY
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Information Transmitted 
with 1 Hidden Unit
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Range Effect (Garner Data) 
n-10

1
I
0 € E1

o
CO

incvi

e
cvi

in

o

ino

oo
10 20 30 /•">

Total Range in dB 
Figure 4.27

50 60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

212

Range Effect (Simulation) 
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Correlation Plot IWT/MSE With 1 Hidden Unit
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Correlation Plot IWT/MSE With 2 Hidden Units
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IWT Latency Distributions, H.U. - 1, d'-0.75
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IWTLatency Distributions, H.U. -2,d-0.75
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QQ-Log Normal Prob. Plot for IWT Distributions (1 H.U.)
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QQ-Log Normal Prob. Plot for IWT Distributions (2 H.U.)
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Asymptotic MSE for Correct and Incorrect Responses 
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Asymptotic IWT Latencies for Correct and Incorrect Responses
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Compatibility Effect for MSE
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Compatibility Effect for Latency
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The 16 Two-Dimensional Stimuli
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MSE log-lop plot for the Two-dimensional stimuli
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Luce’s model fit for the simulation data

s

s

s

o

oCM

o
0 20 40 60 80 100

Luce's model Prediction 
Figure 4.42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Exp
eri
men
tal
 Re

sul
t

t
227

Luce's model fit for Nosofsky’s data

s

oCO

o<0

o

o
0 20 40 60 80 100

Luce’s model Prediction 
Figure 4.43

C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

228

MDS Solution for Simulation Data

c\jd

CMo

o
-0.4 -0.2 0.0 02 0.4

Figure 4.44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

€
2 29

MDS-Choice Model Configuation for Nosofsky's Data
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Single Hidden Unit Representation 
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Internal Representation for the Two-dimensional Stimuli
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A schematic view of the network
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Length of the state vector as a function of iterations in the decoding module after presentation of the word "AISLE''
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Correlation between the simulation results and the median of the distribution of latencies for human subjects for the 44 target words
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2 3 7

n BP MV-BP

4 1.971361 2.000000
8 2.173646 2.492983
16 2.453814 3.413347
32 2.689043 4.634162

Information Transmitted 
for the BP and MV-BP Algorithms 

with n=[4-32]

Table 4.1

n
4
8
16
32

BP
0.003500
0.301500
0.731500
0.933562

MV-BP
0.000000
0.259682
0.579807
0.839017

Probability of Error 
for the BP and MV-BP Algorithms 

with n=[4-32]

Table 4.2
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OOCondiDon, rw4 OG-Condinon, n-4
500 0 0 0 365 135 0 06 493 1 0 32 468 0 00 0 500 0 0 0 500 00 0 0 500 0 0 35 365GO-Condipon, rw4 GG-Conditon, n-4
4M 2 0 0 500 0 0 00 414 84 2 0 498 2 01 53 446 0 0 9 491 00 0 18 482 0 0 0 500

: OO-Coodmor, n«e407 0 3 0 0 0 0 00 490 1 0 0 0 0 00 5 495 0 0 0 0 00 0 0 493 0 0 7 032 1 14 22 422 0 0 90 1 0 0 0 497 2 00 0 0 6 0 0 493 10 3 0 0 41 43 30 383
OG-Candtoon, n.8482 15 0 0 3 0 0 065 409 26 0 0 0 0 00 6 457 36 1 0 0 00 0 37 456 6 0 0 116 0 0 13 323 44 33 7111 0 0 0 7 425 57 00 0 0 0 8 40 402 500 0 0 8 10 0 59 423
GO-Condioon, n-6443 57 0 0 0 0 0 027 463 10 0 0 0 0 00 2 473 25 0 0 0 00 0 28 453 19 0 0 00 0 0 8 476 16 0 00 0 0 0 25 470 5 00 0 0 0 0 7 484 90 0 0 0 0 0 65 435
GG-Condioon, n-6if 490 10 0 0 0 0 0 08 488 24 0 0 0 0 0i< 0 8 476 16 0 0 0 0

1 0 0 35 435 30 0 0 05 0 0 0 24 459 17 0 00 0 0 0 39 437 24 00 0 0 0 0 7 473 201 0 0 0 0 0 4 496

; Slfmulus/reponse matrices! Table 4.3
\
t
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00-Condition, n-16
500 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 20 133 11 17 45 64 27 155 2020 260 0 0 0 0 0 0 36 0 0 0 0 0 027 110 105 0 0 0 0 0 0 0 0 0 0 68 3530 30 51 144 0 0 0 0 15 24 22 25 20 60 1322 29 45 70 160 0 0 0 21 23 13 15 1 30 1015 14 31 27 76 135 0 0 27 31 12 ' 26 0 22 2016 1 0 4 54 50 210 0 16 4 7 20 0 22 370 0 0 0 0 0 0 0 500 0 0 0 0 0 020 1 0 1 40 42 60 210 50 6 5 10 1 6 3137 12 16 11 37 13 0 0 0 0 373 0 0 0 00 ' 0 0 0 0 0 0 0 0 0 0 500 0 0 023 0 0 1 71 9 3 00 2 192 40 36 0 30 510 16 21 10 17 111 0 17 3 61 30 27 170 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 500
12 0 0 0 0 0 0 9 11 147 16 53 44 170 20

OG-Condition, n-16309 120 0 0 21 14 1 0 0 0 0 0 34 0 003 296 30 80 0 0 1 0 0 0 0 0 0 0 00 284 15 120 51 26 1 2 0 0 0 0 0 0 00 4 14 150 241 10 16 0 0 0 0 0 0 0 3717 12 2 20 05 05 134 49 20 0 0 23 0 0 497 4 0 103 SO 70 151 90 1 0 0 0 0 0 70 0 33 25 1 13 55 367 4 1 0 0 0 0 00 0 1 17 0 0 0 365 117 0 0 0 0 0 00 0 0 0 0 53 61 70 285 32 0 0 0 0 00 0 0 0 5 15 0 0 61 310 102 7 0 0 00 0 0 0 0 1 0 0 1 99 324 75 0 0 00 0 0 0 0 17 0 0 0 1 70 346 so 3 10 0 0 1 4 0 0 0 0 0 0 01 380 54 10 0 0 0 1 0 0 0 0 0 0 0 111 256 1320 0 0 0 0 0 0 0 0 0 0 0 4 20 4747 12 1 2 0 0 0 0 0 0 0 0 0 3 34
GO-Condition, n-16332 2 9 2 0 00 26 3 0 23 0 0 0 15 00 0 0 137 0 107 0 0 3 0 0 57 50 18 1326 225 0 120 63 11 0 0 0 0 16 0 21 0 022 2 0 0 274 2 7 2 0 0 0 0 0 22 1330 110 0 0 0 206 0 21 5 0 0 26 0 0 10205 66 0 07 0 0 0 14 0 0 0 2 0 0 140 0 3 0 29 361 0 19 0 17 14 0 42 0 00 22 19 24 3 6 15 37 6 0 0 0 0 0 2190 0 1 1 0 1 4 123 327 42 0 0 0 0 214 8 0 10 10 5 0 23 62 313 33 0 0 0 00 12 0 21 17 16 0 0 0 2 430 3 0 0 019 0 20 27 0 30 0 0 0 0 22 349 15 0 019 0 0 24 23 20 0 0 0 0 0 2 390 6 09 0 0 0 9 12 27 1 0 0 0 0 23 405 140 0 5 0 0 0 17 1 4 0 0 0 0 107 361SO 0 41 0 43 34 62 62 54 3 0 0 0 6 110
GG-Condition, n-16239 39 102 60 33 6 0 0 1 0 0 2 0 1 94 106 327 26 2 0 0 0 0 0 0 0 0 0 330 35 421 42 0 0 0 0 0 0 0 0 0 0 21 4 250 207 24 6 0 0 0 0 0 0 0 0 02 4 22 220 134 55 52 2 0 0 0 0 0 0 00 0 0 44 124 82 200 39 2 0 0 0 0 0 00 0 0 1 11 51 254 181 2 0 0 0 0 0 00 0 0 0 0 4 82 349 65 0 0 0 0 0 00 0 0 0 0 0 0 90 332 69 0 1 0 0 00 0 0 0 0 0 0 4 111 247 134 4 0 0 00 0 0 0 0 0 0 0 2 84 314 100 0 0 00 0 0 0 0 0 0 0 0 1 91 362 43 3 00 0 0 0 0 0 0 0 0 0 1 141 277 73 80 0 0 0 0 0 0 0 0 0 0 1 86 230 1741 1 0 0 0 0 0 0 0 0 0 0 7 60 4313 13 41 11 1 2 0 0 0 0 0 0 3 3 33

Stimulus/reponse matrices Table 4.3 (continued)

oo
176•7514050340

1000000

02
1

1930000000002441

010001503
101514000000

15
10

700000000000000
390
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n 0 0 OG GO GG
8 2.68 2.58 2.21 2.41

16 2.60 2.57 2.32 2 .58

Information Transmitted for the 
four filter conditions

Table 4.4
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64 0 0 0 22 14 0 0 0 0 0 0 0 0 043 0 0 0 15 42 0 0 0 0 0 0 0 0 02 0 0 0 0 76 0 0 0 6 16 0 0 0 00 0 0 0 0 43 9 0 0 0 47 0 0 0 142 40 0 0 0 18 0 0 0 0 0 0 0 0 013 13 0 0 10 63 0 0 0 0 1 0 0 0 00 0 0 0 0 55 6 0 0 0 39 0 0 0 00 0 0 0 0 16 9 0 0 0 72 0 0 0 00 0 0 0 0 68 22 0 0 0 10 0 0 0 00 0 0 0 0 46 18 0 0 0 36 0 0 0 00 0 0 0 0 0 0 0 0 1 79 2 0 0 00 0 0 0 0 0 0 0 0 0 50 0 0 0 10 0 0 0 0 42 14 0 0 0 44 0 0 0 00 0 0 0 0 11 0 0 0 3 83 3 0 0 00 0 0 0 0 0 0 0 0 0 36 3 0 0 30 0 0 0 0 0 0 0 0 0 6 0 0 0 4
Simulation Stimulus/Response Matrix 

with 1 Hidden Unit

Table 4.5

o
o
o
o
o
o
030018490
05890
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72 7 0 0 16 5 0 0 0 0 0 0 0 0 061 26 0 0 6 7 0 0 0 0 0 0 0 0 00 0 34 55 0 0 4 7 0 0 0 0 0 0 00 0 8 78 0 0 4 10 0 0 0 0 0 0 066 6 0 0 22 3 0 0 2 1 0 0 0 0 035 24 2 0 26 12 0 0 0 0 1 0 0 0 00 2 21 34 0 5 16 20 0 0 1 1 0 0 00 0 3 62 0 0 5 28 0 0 0 2 0 0 00 0 0 0 4 0 0 0 23 2 0 0 58 13 00 0 0 0 3 1 0 0 35 11 1 0 26 20 30 0 0 0 0 0 1 1 0 2 19 21 0 3 140 0 0 0 0 0 0 6 0 0 9 28 0 0 30 0 0 0 0 0 0 0 11 3 1 0 74 11 00 0 0 0 0 0 0 0 5 2 0 0 68 24 10 0 0 0 0 0 0 0 0 2 3 8 0 5 280 0 0 0 0 0 0 0 0 0 1 7 0 0 10

Simulation Stimulus/Response Probabilities Matrix with 2 Hidden Units

Table 4.6

o
o
o
o
o
o
o
o
o
o3954
0
05482
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63 6 0 0 22 4 1 0 2 2 1 0 1 0 029 31 6 2 12 12 4 1 1 2 1 0 0 1 05 16 35 18 2 15 14 5 0 1 3 1 0 0 00 3 20 37 0 4 13 24 0 1 5 5 0 0 116 4 0 0 38 11 2 0 20 4 0 1 1 0 08 18 2 1 11 24 7 1 4 19 3 0 0 3 11 4 9 6 1 9 28 20 0 10 15 7 0 1 10 0 6 11 0 2 10 45 0 2 14 19 0 0 32 2 0 0 24 7 1 0 40 12 0 1 12 6 12 1 1 0 8 22 6 1 12 33 6 2 4 9 31 1 2 1 0 2 16 17 0 15 24 12 0 5 110 0 1 3 0 1 4 21 0 1 17 34 0 0 140 0 0 0 5 3 0 0 25 13 0 0 37 19 20 0 0 0 2 5 2 1 5 24 7 3 4 41 200 0 0 1 0 1 2 4 0 6 14 25 0 7 320 0 0 1 0 1 2 4 0 0 9 18 0 1 21
Nosofsky's Stimulus/Response Probabilities Matrix 

Table 4.7

f
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